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Fine structures in sheared granular flows
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Computer simulations were used to investigate shear flows of large numbers of viscoelastic, monosized,
spherical particles in unbounded and bounded systems with solid fractions ranging from 0.16 to 0.59. A
modified hard-sphere model with inelastic, instantaneous particle interactions was found to replicate some
results predicted by kinetic theory in an unbounded shear flow at low and moderate solids fractions. This model
was found to predict features such as particle lateral diffusive motion even for systems at solid fractions as high
as 0.56. However, for higher solid fractions where phenomena such as jamming could occur, a particle
dynamics model accounting for particle contacts of finite duration has been developed, in which the viscoelas-
tic behavior of the particles was represented using a nonlinear Hertzian model. The nonlinear viscoelastic
model was found to give more reasonable predictions for cluster formation than previously reported linear
models, especially when accounting for surface friction in the model. However, neither frictionless nor fric-
tional particle models could predict particle ordering in unbounded flows. As such, simulations were performed
for bounded systems using both the modified hard-sphere model and the nonlinear particle dynamic model. For
a bounded shear flow, particle ordering could be predicted by the hard-sphere model even in the absence of
both particle friction and gravity, with the local solid fraction and wall separation distance governing the flow
stability. For these conditions chain formation was found to be quite likely in the disordered layers for
frictional particles. The interesting stick-slip dynamics could be clearly observed in the normal stress signal at
the bottom wall. Interpretations were proposed for the complex processes observed, which could lay the
foundation for further investigations in sheared dense granular systems.
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[. INTRODUCTION sheared disordered granular assembly. It is worth mentioning
that the surface properties had a strong effect on the experi-
The progression of a nonequilibrium, dense, disorderednental results of Elliot, Ahmadi, and Kvasng, since they
granular assembly toward its steady state under shearing m@id not observe an ordered phase for shearing flow of rough
tion appears to be highly complicated. Recently, Cates, Wittgranular materials. This observation highlights the impor-
mer, Bouchaud, and C|aud[m] Suggested that in a constant- tance of the nature of the interactions between grains in
volume shearing flow of a dense granular material in g@ranular systems. _ _
Couette geometry, jamming could occur indicating a transi- N @ sheared, dry, granular system, gradients in the mean
tion to the glass state which has an amorphous configuratiof®W induce interparticle collisions, which generate fluctua-
The dilatancy, which is the tendency of dense granular medilons in the local mean motion of the grains. The collisions
to expand upon shearinf2], could be viewed as the mvolve a nearly elastic deform:?mon of grains Whose.velou—
constant-load counterpart of jamming. Jamming appears tges_ c_hange due t(_) for_ces resulting from the deformation. The
occur due to the formation of anisotropic, nonstraight forcecollision time, which is of the order of 10 s or less, con-
chains[3,4], which are linear strings of nearly rigid particles SISt of a compression time during which deformation occurs

in contact that can support the shear stress along the corgld @ restitution time during which the shape is restored.
pressional direction indefiniteljd]. Since kinetic energy is degraded into heat due to the inelastic

In contrast to the metastable character of the jammin ature of deformations, external energy should continuously
process mentioned above, evidence has been repfied P€ proyideq to granular. systems to .pre\./ent the syst.em from
which indicates that the initially disordered configuration of collapsing into the solid state, which is characterized by
shaken granular monolayers may exhibit a stable crystalline
order. Moreover, experimental dd#, such as that shown in
Fig. 1, suggest that an ordered phase may also be observed in
rapid shear flows of smooth granular materials in a two-
dimensional planar Couette geometry. Thus, in addition to
their importance discussed [i@], dense granular flows may
serve as experimental models for investigating general fea-
tures of the transition to an ordered state from a disordered FIG. 1. Snapshot of smooth steel balls from an experiment con-
configuration. This emphasizes the importance of being ablducted in a two-dimensional Couette geometry. Note the presence
to predict whether ordering or jamming would occur in aof ordering.
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strong fluctuations of the forces on individual grains. midpoint is atr, Ny is the number of bond€(r) and ¢(r)

In the presence of contact friction between the grainsare the polar angles of the bond measured with respect to
which induces fluctuations in the local mean rotational mo-fixed external Cartesian coordinates. An averaged value of
tion of the grains, an additional dissipation of kinetic energyQ,,,, over a suitable set of bonds in the sample is given as
into heat yvc_;uld .be expec_ted. Three types pf frict_ioln forcesq, = (1/Np) = pona Qim(r). Therefore, the quantit®y is de-
may be distinguished, which are due to rolling, sliding, andfined aSQGZ[(47T/l3)E6=76|Q|m|2]1/2-

adh_esmn(stlcklng) of grains. Sliding friction forces and aql- A second indicator is the mean-square displacement of the
hesive forces could accelerate or decelerate the rotational

motion of the grains, while rolling friction forces always particles, which is represented as a function of time, defined

decelerates the rotational motion. However, the physical relfY <_Ar2(t)>.:.N SIS ([ri() —ri(0)1%), wherer;(t) is the
evance of the frictional contact between the particles remaingarticle positionN represents the number of particles in the

a topic of controversy due to experimental evide[®kthat computational box, and the angular brackets, which denqte
suggests that the dynamics of grains may be dominated Hiie ensemble average, may be generated by using many time
collisions rather than sliding contacts even in slow densérigins.

flows. Rintoul and Torquatd14] showed that the first indicator

Computer simulations may play a valuable role in de-for a disordered configuration approaches zero at the rate of

o ) . . —1/2 ; : 112
scribing the macroscopic flow behavior resulting from theN, = with the expected width of fluctuations of 0.196~.
aforementioned phenomena. Attempts have been made for example, the value dg for a system with cuboctahe-
simulate dense granular shear flows by modeling the graindral symmetry is about 0.BL5], which makes this indicator
as inelastic rough spheres. One well-known method fouseful for distinguishing the glass state, for whi€y
simulating granular particles is the particle dynamic method~1/y/N,, from an ordered system, since for both of these
[2,9-10. This method assumes that the grains behave astates the long-time value @fAr(t)) [16] remains nearly
viscoelastic particles that interpenetrate during a collisionconstan{17].
resulting in the generation of restoring forces that can be In his experimental study of mixing in granular flows,
expressed by Young’s moduli of the order of N/m?. The  Bridgwater[18] suggested that the motion of spherical grains
short-range interaction of particles, therefore, may result in @& a simple shear cell is much like a random walk without a
large gradient of the interaction force, which implies that thepreferred direction of movement. This observation supports
interaction force between the grains in contact should be cathe use of the Einstein relationsHip9] for the estimation of
culated about 1000 times during a collision to provide accuthe diffusive motion, in an average sense, in these systems.
rate results. Presently a three-dimensional simulation with a Note that in the wall region large variations in velocity
large number of particles would require significant computaimay occur over distances of the order of a few particle di-
tional intensity. As such, a question arises as to whether ameters, which leads to particle migration in the direction
less computationally intensive model could predict the basimormal to the plane of shear, where the particles move to
features of sheared granular flows. regions of lower stress. As a result of this motion, which is

Another method for the simulation of granular assembliesmore pronounced in moderately dense granular shearing
is the modified hard-sphere model of Alder and Wainwrightflows, nonuniform spatial distributions of particle concentra-
[11], which has been frequently uséd2,13. In this ap- tion and granular temperature develop in the direction nor-
proach, collisions are assumed to be instantaneous and theal to the mean flow, which results in ordinary diffusion
dissipation is introduced through a coefficient of restitugon along the concentration gradients. In the presence of a strong
and a surface friction coefficient and time advances from lateral granular temperature gradient, an extra diffusive flux
one collision to the next, rather than with an imposed timeof particles may be observed. Under conditions where this
step as used in the particle dynamic methods. Although théux becomes significant, the application of simplified mod-
hard-sphere model appears to be highly idealized, it can reels could lead to different interpretations of measurement
produce the major features observed in the experinjé@8ls  results in roughly similar apparatus.

In the present study, the hard-sphere model will be further For example, in systems where gravity does not affect the
tested against the particle dynamic model to find out howateral particle diffusive motion, at nearly the same solid
closely the model can reproduce the interesting behavioiractions, a difference of four orders of magnitude exigy
such as jamming and ordering in sheared granular flows dietween the values of the dimensionless transverse diffusion
high densities. To this end two quantities are introducedcoefficient, defined aB* =D/o?&, measured by Menon and
which may be suitable for monitoring changes in the initially Durian[8], and the values calculated from the results of Na-
disordered state due to shearing motion. One indicator is thtarajan, Hunt, and Tayld21]. Here, o represents the diam-
quantity Qg [14], which characterizes the average bond ori-eter of the particless is the shear rate, and is the self-
entations in a system of particlég is a rotationally invari-  diffusion coefficient. It is unclear whether this difference is
ant combination of the bond order paramet@gs,, defined due to the inaccuracy of on@r both of the experimental
asQm=Yml 0(r),é(r)]. In order to evaluate the bond order proceduregsuch as solid fraction measurements to some
parameteiQg, particles residing within a shell of lsdsur-  other reason, such as misinterpretation of the results using
rounding a given particle are considered as its near neighsimplified theories.
bors. Hereo is the particle diameter and,[ 6(r),¢(r)] Analyzing the observations of Menon and Durian, Den-
represents spherical harmonics associated with a bond whoaéston and Li[22] pointed out that the value @fAr?(t)) at
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long times could be considered as being almost constanfo address this issue, the simulations were divided into two
indicating that diffusion was very limited. This could be due main groups. In one set of simulatiofr®ugh particle simu-
to the particles being trapped in the almost permanent cagdations the frictional contact force between the particles gov-
formed by their neighbors. However, at long times the indi-erns the flow dynamics, and in the other grasmooth par-
cator(Ar?(t)) for a granular assembly in the gravity driven ticle simulationg the dynamics of grains is dominated by
flow of Natarajan, Hunt, and Tayld21] increases linearly inelastic collisions.
with time. This observation suggests a fluidlike behavior in a Starting from a low solid fraction, namelyp~0.16,
monodisperse granular flow at high average solid fractionswhere the behavior of the system appears to be less complex,
Surprisingly, they suggested that the average solid fraction ithe solid fraction was increased carefully up dq~0.58,
the system was in the range of 05®;<0.7, though a sys- with the goal of examining the conditions for which the fluid
tem with the solids’ fractiorPs>0.6 can hardly be consid- would become ordered and the conditions for which jam-
ered as a fluid. In this light, simulations of dense shear flowsning would occur. For low solid fractions, there are a very
of granular material may be of value to interpret their experi-large number of disordered states in which spheres can ar-
mental observations and could even suggest a more reasamnge themselves, which causes the fluid to be thermody-
able value for solids fraction if21] based on the measured namically stable. By contrast, for a dense system there are
values ofD*. much fewer allowable disordered configurations. Therefore,
Much of the present knowledge about particle diffusivity at short times the instabilities could lead to the formation of
in shearing flows of a granular assembly has been derived nucleation point, which at longer times results in an or-
from simulations. These include the calculation of the self-dered region surrounded by low density regions. As pointed
diffusion coefficient in a bounded system by Savage and Dabut by Johnson and Jacksf2i7], not all the granular mate-
[23] and computer simulations of the anisotropic diffusionrial is sheared uniformly in such a system. The ordered re-
tensor for an unbounded system by Campp&l]. Using a  gion withstands shear, while in the low density regions, the
kinetic theory analysis, Savage and 28] derived an ex- shearing motion is enhanced, reducing the tendency of jam-
pression for the self-diffusion coefficient, which reduces toming of the system. Note that jamming can be viewed as a
the classical Chapman-Enskog re$@H] in the limit of per-  spontaneous transition to a metastable disordered configura-
fectly elastic particles. Apparently, the theoretical self-tion that withstands shear.
diffusion coefficients were in excellent agreement with those Although the picture described above is quite detailed, the
obtained from the simulations at low densities. However, theactual behavior of sheared granular materials can be even
applicability of the theoretical expression was questioned atore complex than has been indicated above. For example,
higher densities, since the numerical result for self-diffusionin the experiments of Miller, O’Hern, and Behrindél, the
exceeded the theoretical value. This discrepancy might bforce fluctuations were measured at the wall for a dense
attributed to an enhancement of the velocity correlations dugranular flow in a Couette geometry. They observed a
to the excitation of slowly decaying collective motions in the strongly non-Gaussian probability distribution in the time se-
flowing granular assembly. Note that Savage and [28] ries for the normal stress, which exhibits fat tails indicative
did not consider particle diffusivity at high solid fractions, at of an underlying complex dynamics with long correlation
which either ordering or a glass transition might occur. How-times. Interestingly, a shell model of magnetohydrodynamics
ever, Campbell12] reported the absence of particle diffusive turbulence produces a time series of energy dissipation as
motion at a solid fraction of 0.56, although he did not discusslefined in[28], with the intermittent spikes of dissipation
whether the granular assembly had undergone crystallizatiomguite similar to the intermittent spikes in the data of Miller,
or a transition to the glass state had occurred in his systen©’Hern, and Behringef4].
In light of the above, a general study of the diffusion pro- Another example is the observation of the stick-slip mo-
cesses in granular materials appears to be lacking. tion only below a critical shear rate in the shearing of cohe-
One of the aims of this paper is to set forth a preliminarysionless glass spheres in an annular, parallel-plate shear cell
framework for the analysis of shear-induced diffusion in aby Hanes and Inmaf29]. In these systems a constant-
bounded granular material at high shear rates. To this end,\&lume shear flow may not be achieved due to the tendency
comprehensive model was developed for the diffusive proef dense granular media to expand upon shearing. Analyzing
cesses involved in a rapid shear flow using the recently dethe shearing flow of frictional disks confined between solid
veloped revised Enskog thed®5] to obtain formal expres- walls under a constant load, Thompson and Gr2&spointed
sions for the particle diffusion coefficient, particle thermal out that in the presence of gravity the system is unstable at
diffusion coefficient26], and coefficient of mobility. shear rates less than a critical shear rate, exhibiting a stick-
To obtain an increased understanding of the aforemerslip motion consistent with the experimental observations.
tioned mechanisms for the diffusive displacement of the parThis oscillatory motion could be due to periodic dilatancy
ticles in bounded granular materials, it would be quite usefutransition and gravitational compactification. It is remarkable
to compare the theoretical predictions with the simulationthat a similar stick-slip dynamics has also been observed in
results. Another purpose of this study, therefore, is to investhe shearing motion of a thin microscopic fluid film confined
tigate further the issues such as ordering and jamming in theetween solid walls where the role of gravity may not be
granular assembly. It has been reported that the particlsignificant[30]. The similarity could indicate analogies be-
roughness, which induces fluctuations in rotational motiontween the statistical physics of these systems, suggesting that
has a significant effect on the formation of force chdihk  a more comprehensive understanding of the flow dynamics
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may be obtained by comparing the results of the shearingto that of particlej at the moment of impact, an\ii’j'mp
flow of a granular material in the absence and in the presendedicates the postcollisional value of the relative velocity.
of the gravity. Such information is invaluable in the devel- The normal restitution coefficient decreases from unity as the
opment of advanced theories capable of describing flows g{ormal impact velocity,V,=VI™.k, increases from zero
hig_h solid frac_tions, Which are of real significance in facili- [34]. Assuming that no plastic <Jjeformation occurs, Schwager
tating the design of practical granular flow systems. and Pschel[35] used the generalized Hertz theory of elastic

The organization of the present paper is as follows. Ifmnpact for the case of viscoelastic collisions and suggested
Sec. Il, a description is given of the computer S|mulat|onan approximate functional form foe(V,) as 1— e~Vﬁ’5,
Guhich appears to be in agreement with the experimental data

34]. Following this idea, the following heuristic functional
orm was chosen for the coefficient of restitution:

tion Il presents the simulation results for unbounded granu
lar shear flows. Comparisons are made between the har
sphere model and previous results from kinetic theory. For
higher solid fractions, simulations using the particle dynamic
model are performed, including comparisons between linear
and nonlinear models of viscoelastic particle behavior. In ) ) ] o ]
Sec. IV, simulations of bounded shear flows are performed t¥/here the dimensionless normal impact velocity is defined as
investigate the formation of an ordered phase. This behavioYn = Va/Vo. Here, the reference coefficient of restitution,
highlights the importance of the local solid fraction and wall €, and the reference velocity, are adjustable parameters
separation on the stability of the shear flows of a granulaff the model.

material. In this section the results of the wavelet analysis are Considering the particle rotational motion, the relative ve-
also presented, which may interpret the findings in the lightocity of the two points on the particle surfaces that come
of phenomena observed in physical systems such as the etegether at impacty [, is given by Allen and Tildesley
istence of stick-slip dynamics, characterized by harmonid36],

frequencies. Particle diffusion in low and moderately dense

systems is also analyzed using a comprehensive model based imp .

on the revised Enskog theory of granular fluids and on Vit =(Vi= V) = skX (@ + ). ©)
Grad's method of moments. A part of the formulation is pre-
sented in the Appendix, along with formal expressions for
the particle diffusion coefficient, particle thermal diffusion

cpefflchgnt, and coefg_cf;'legtt Of mlozlllt'fl]. ﬁThf ccf)mput_?rt spectively. For the description of the tangential forces be-
simulations were modified to include the effects of gravity 10y oo grains at the contact zone, Lun and Savia#

Tr\rllisggisglrges Egggdn%(: IT?QFE)':(? Isriltsetr?ans]tsinl;;nfizrtjr%gs;izthngggeSted that during a collision the tangential components
' Vi are changed such that

the dilatancy of granular media and stick-slip dynamics are
explored and as a result fresh interpretations are proposed for . . . . A R
these complex processes. Finally, the concluding remarks are kX (V{[™Px k) = — BkX (V{[PXk), 4
given in Sec. V.

e(Vy)=1—(1-e)(Vy)'s 2

In the above equatiorV;, V;, w;, andw; are the transla-
tional velocity and the spin velocity afandj particles, re-

where 8 is the tangential coefficient of restitution. Then the
Il. MATHEMATICAL MODELS conservation laws yield the following expression for the im-

) ) ~ pulse:
In the present study, simulations of granular assemblies

were carried out by means of the modified hard-sphere
model of Alder and Wainwrighf11]. Simulations were then
carried out using the particle dynamic mod&l9,10, and N L
the corresponding sets of results were compared. The modéfhere nm= s[1+e(Vp)], 7=:(1+B)k/(1+k), «
development for each approach will be described in the fol:=4!/(ma?), andm and| are the mass and the moment of

J=mapy (k- VIMP)k+mapkx (ViPxK), (5)

lowing sections. inertia of the particle, respectively. The first term on the right
side of Eq.(5) represents the normal impulse which is in the
A. Modified hard-sphere model direction ofk, and the second term is the tangential impulse

In the modified hard-sphere modal2,13, the grains are which is in the direction perpendicular foand lies in the
assumed to interact repulsivelg2,33, and the inelasticity Plane ofk and J. It is worth mentioning that the kinetic
of the grains is taken into account through the normal coefenergy of the particles is not necessarily conserved in colli-
ficient of restitution,e. The restitution coefficient relates the Sions due to the inelasticity and roughness of the particles.
precollision and postcollision relative velocities of the two  The Coulomb38] friction law was chosen to model the

points of impact on the particle surfaces: friction between two colliding grains with a surface friction
_ _ coefficientu when the normal impact velocity,, is small,
(V{™-k)k=—e(V{™®-k)k, (1) namely, 7,/kx (V{"xK)|=wn|(k- V)k|. Then, an ex-

R pression for the tangential coefficient of restitutigd), may
wherek is the unit vector directed from the center of particle be found as follows:
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TABLE I. Definition of variables needed for the solution of the

(k- VImP)k . .
B=—1+u(lte) 1+= A| 'Il A| _ 6) quartic equation.
KTk (VIPx k

[kx( g ) Variable Definition
Note that negatiye values ¢f in the above expres_si_on indi- K, A (Co [23) 2~ 3(2, +d) V122,
c,jate a requctlon in th.e compcA)nen.t of the postcoII|S|0|j1aI.reIa- K, 251 (22%,) (ks + ko) Y3+ (ks + kg) Y31/ (382,)
tive v_elocny perpendicular t&, without any change in its Ks 16 Cipg (v2, + diw) /a2, — 4 (byy, + c3 Jat ) /a2,
dlrec:]lon[3h7]. L loci is | | Ky (Vi2w+diw)276Ciwbiw+3ai2w(ri2w70'2)

W eni; e norma |mE)actimveAOC|tyn |s' arge, .na.me \ Ke 2(02,+ diny) 3 — 1801, Cin(v2, + i) + 272,62, +9(r 2,

772|-k><(\(” Px k)|_<,¢./«171|(k_-vij P)k|, then either sticking or —0?)[3c3,— 283, (v, +diw)]
rolling without slipping at impact may occur. During sticking Ke N

contacts, both the magnitude and direction of the relative
tangential velocity may change. A phenomenological con-

stant, denoted by,, has been suggested by Lun and Bent w o o i
[12] to characterize the restitution of velocity in the tangen- Tz +3(kitka) }
tial direction for the sticking contact. The suggested value for LW
this parameter for steel pucks &=0.4 [12]. For rolling +l<2k e Ka(ky+ kz)_1/2> e
with slipping, 8=0 [39]. In this case the average normal -2 1" 4
force results in a large tangential force which decelerates the iy, =\ c (10
precollisional tangential velocitykx (V{xk), without — Lk + kz)l’z}
slipping. L Giw

Applying the calculated values for the coefficients of res- ) Ka(ky+ky) 12\ 12
titution, the postcollisional velocities and spins, which are *3| 2k —ko— - :
required to create the trajectories of the particles in the cell,
can be determined using the following equations: The expressions for the variablks, k,, andk, are listed in

Table I.
Vi— V=V =V;=(n— ) (k- Vii")k+ VP, Neither, one, or both pairs of roots may be real. The

(7) smallest real positive root of the quartic equati@ corre-
2k . , ~ sponds to particle impact. Obviously, the absence of any real
@ — 0= 0] — == X[ kX (VTPXK)]. positive root implies that the pair of particles will not immi-
nently collide. In the case that the particles experience the
Following Allen and Tildesley36], a generalized relation Same acceleratiofe.g., gravitational acceleratipnquartic
was developed for the collision time calculation of a pair of€duation(9) reduces to the quadratic equation giveri36].
particles,i andw, of diameteres, which are located at time In this approach, in which the system evolves on a
atr; andr,, having velocities, andv,,, which experience coII|S|op-py-coII|S|on basis[36], _the CO|.|ISIOI’1 dynamics
different accelerations, and a,,. If these particles are to Model is implemented for the colliding pair and then a search
collide at timet+t;,,, namely, is |n|t|a_ted fo_r the next poII|S|on. Applying this methqd,
three-dimensional simulations of a large number of particles
1 can be conducted in reasonably short run times.
riw+viwtiw+ Eaiwtizw =0, (8)
B. Particle dynamics models
thent;,, may be obtained by finding the smallest real positive | the particle dynamics model, two stages occur during

root of the following quartic equation: an impact. During the first stage, which is called quasielastic
a2 initial compression, the particles undergo deformation until
iw .4 3 2 2 2 2_ their relative velocity vanishes. Recent experiments b
4 CitS (2, di )2+ 2bi i+ 12, — 02=0. y €s. Recent experiments by
4 tw T Gt + (Vi + )ty 2Dt + iy Gugan[40] demonstrated that in this period, the kinetic en-

) ergy of the relative motion of the particles may be stored
) _throughout the strain field. Therefore, the elastic potential

Here,a;,, andv;,, are the values of the relative acceleration energy function used by Herf#1] may be valid for the
and relative velocity vectors, respectively, between particles nitial compression, suggesting that a normal repulsive con-

andw. The parametec;,, is the dot product of these tWo (a¢¢ force on particlé due to particlg is produced, whose
vectors, namelyg;,, =&, - Viw, and the variable;, denotes magnitude is given by

the distance between the centers of the particles. The param-

eterd;,=a,, Iy represents the dot product of relative ac- il =K. (11)
celeration and position vectors. The dot product of the rela-

tive velocity and relative position vectors of particies, is  In the above equatior,, is a constant defined as"?% (3y)
represented b, , i.e.,bi,=ri- V. The solutions of Eq. for a sphere on sphere and@o'?/(3y) for a sphere on
(9) can be explicitly expressed by plane, y=(1—v?)/E, v is the Poisson’s ratio, ané is
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FIG. 2. (a) Side view of a cubic box containing about 10 000 identical nonoverlapping spherical particles, half light and half dark. Arrows
show the direction of motion of the wall particleg®) Dimensionless translational granular temperaflifeas a function of solid fraction.
Smooth particles are represented by triangles and squarex;#00.84 and 0.93, respectively. Squares with plus repre$é&nfor e
=0.93, where the coefficient of restitution is assumed to be constant. The upper and lower solid lines represent kinetic theay fits for
=0.93 and 0.84. For rough particles, inverted triangles areder0.84,u=0.41, and3,=0 and diamonds are f&,=0.93, . =0.123, and
Bo=0.4. The dashed lines are visual fits through the data. Inset: Distribution of dimensionless velocity as a function of dimensionless
distance inz direction.(c) Dimensionless translational granular temperature for smooth particles as a function of dimensionless distance in
z direction. Left and right triangles ar€} and T} at ®~0.2 andey=0.93, circles and diamonds alg¢ and T} at ®~0.45 ande,
=0.93, triangles ard@; at®,~0.2 ande,=0.84.(d) Graphs of the normalized probability density distributignsfor vy , vy , v7 , in the
form of In[—In(p, =p(V*)/p(0), atd4~0.4 ande,=0.93. Triangles are for} , squares fon/;,k , and inverted
triangles forv; . The solid line indicates the fitted value for the angular coefficient, which is abo(g) Dimensionless translational
granular temperature for rough particles as a function of dimensionless distanafréttion. Right and left triangles afE and T} at
®~0.2 andey=0.93, u=0.123, andB,= 0.4, respectively; circles and diamonds &eand T} at®~0.4 andey,=0.93,1=0.123, and
Bo=0.4, respectively; triangles afE} at ®;~0.4 ande,=0.84, u=0.41, andB,=0. (f) Graphs of the normalized probability density
distributionsp,, for spins in the form of Ip—In(p,)] versus Infw|), wherep,=p(w)/p(0), at®,~0.4 ande,=0.93, u=0.123 andB,
=0.4. The triangles are fav, , squares are fab,, and inverted triangles are far,. The solid line indicates the fitted value for the angular
coefficient, which is about 2. The data ef,, WhICh has the mean value of 1. OIlswas manipulated to obtain data with zero mean.

Young’s modulus;;; is the amount of overlap defined as large [40]. However, Haff[10] argued that for many appli-
—|ri;| andrj; is the vector connecting the center of mass ofcations the aforementioned contact scenario is not realized
part|c|e| to the center of mass of particje and plastic flow, spallation, cracking, or fracture may occur.
A considerable part of the initial kinetic energy does notBYy considering the fact that the constituent particles are hard
contribute to the kinetic energy of recoil and is transformedand the amount of deformation near the contact zone is small
into losses such as the thermal energy and energy of sours@mpared to particle size, Haff suggested a simplified model
oscillation. This transformation seems to occur during thd10], which might capture the most important contact prop-
second stage of impact, namely, after the time of maximunerties. In this model for a binary collision betweemnd j
compression of the particles. During this period, the shape aparticles, the normal contact force is given [l2y10]
the particles undergoes restitution due to the action of the
elastic forces, and the potential energy of deformation is 1
again transformed into the kinetic energy. At the end of the Fnij=| KnSij+ 5 m7n5 kk. (12)
second period, the particles are no longer in contact, and
their recoil velocities are reduced after impact.
Gugan suggested that Hertz’s equations give reasonablB the above equatmrk is the unit vector directed from the
results for inelastic collisions even when the energy loss igenter of particla to that of particlej at |mpact,6IJ repre-
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sents the rate of change of , k,=(2x10°)mg o is the lations. About 10 000 identical nonoverlapping spherical par-
stiffness of a spring that prevents the particles from interpenticles, consisting of two species differing only by a color
etrating[2], and v, is a constant which accounts for the label, were placed randomly in the computational box. The
energy lost at contact due to inelastic processes. Thompsad#itial velocity of each particle in thec direction was as-
and Gres{2] suggested that the coefficient of restitutien ~signed with a magnitude according to a linear velocity profile
may be defined as expGyit.). Heret., represents the V(z) plus a small random number within the interval
contact time, which is a constant defined a$2k,/m [—0.08V(L,)|,+0.09V(L,)[]. The initial velocities in the

— 7%/4)—1/2 [2]. However, the measuremeni#,40,43 sug- Y and z directions as well as the spins were all set to zero.

gested that., appears to have a characteristic dependencklereL; is the height of the box, ane, represents the unit
on the impact velocity. name'Ycol’“|Vimp|’1’5 vector in thex direction, which is the direction of mean flow.
H |J . . . . .
During the collision of two slipping particles each particle For the geometry shown in Fig(@, L, is set to unity.
may be subjected to a tangential frictional force that opposes
its rotational motion. The tangential force that characterizes Simple shear flows

the frictional effects may be given by the Coulomb equation To simulate an unbounded shear flow of a highly idealized

system whose dynamics is dominated by collisions, the hard-
sphere model discussed in the preceding section is used, for
) (13 which the particle surface frictiom is set to zero. In this
case, the particle surface is characterized only by a coeffi-
cient of restitution ofe. In the simulations, the solid fraction
aried from 0.16 to 0.58. In order to obtain the local descrip-
on of quantities such as solids fraction, granular tempera-
ture, and velocity, first the box is divided into an appropriate
number of layers in the direction, using the criteria sug-
(14) gested by Loose and Ciccof#t4]. Then, the local values are
calculated as averages over the particles in the particular lay-

where y represents a tangential viscous damping constan€'S- Finally, the local values are averaged for 200 configura-
The tangential coefficient of restitutio, discussed earlier tions each separated y~10"<. Here, the dimensionless

is defined as eXp(')’stcol) [2] time.t* is defi.ned ase. ' . '
Figure 2b) illustrates that as the solid fraction in the com-

putational box increases, the dimensionless translational
granular temperatur@* =T/(¢0)? decreases. Figure(ld
also compares the simulation results for two different values
of ey, namely, 0.93 and 0.84. As expected, the results show
To simulate an unbounded system of spherical particlethat as thermal dissipation increases, the average fluctuation
subjected to a uniform shear, which is characterized by &nergy of the particles decreases. The results from the hard-
velocity gradient of the formV(z)=&ze,, the Lees- sphere model can be compared to those predicted by the
Edwards-type[43] periodic boundary conditions were ap- kinetic theory analysis for smooth spherical particles, as de-
plied to the bounding top and bottom faces of the cubicpicted by a solid line in Fig. ®). Note that an expression for
computational box. Simple periodic boundary conditionsT* may be derived from the kinetic theory of unbounded
[36] were applied on other faces of the computational boxrapid granular flowg25] by assuming an isotropic distribu-
Figure 2a) illustrates the initial configurations for the simu- tion of collision angles between the colliding particles:

imp
1] O
— Xk

Ft,ij:_,U«|Fn,ij||2><

For nonslipping contact, Thompson and Grgdtsuggested
that the tangential force may be estimated using a differer‘h
expression,

Ft,ij =- % YSmRX (V:rjnpx lz)’

Ill. PARTICLE DIFFUSIVITY IN UNBOUNDED
SHEAR FLOWS

1 [1+2Dgc(1+e9) ][5+ Pgc(365+2e,—1)]7 8

*_ —_—
= 21y, 6D.g.(1+eo)(eo—3) s(1+e0)Pgcl, (15)

whereg.=[1— (®¢/P,,)*®m3] "1 is the contact value of the were performed, in which the coefficient of restitution was
equilibrium radial distribution functio45] and @, is the  assumed to be independent of the magnitude of impact ve-
maximum shearable solid fraction for the particld6é]. As  locity and was set to a constant valueeaf 0.93. The results
can be seen from Fig.(B), at higher solid fractions, the from these runs are marked by the squares with plus signs in
dimensionless translational granular temperatures producdeg. 2b). As can be seen, the translational granular tempera-
by numerical simulations exceed the values of those calcuures were slightly lower in these cases, compared to the
lated from the kinetic theory expressiohs). temperatures calculated for similar cases in which the coef-
To verify the accuracy of the algorithm, two extra runs ficient of restitution depends on the magnitude of impact
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velocity, namely,e=1—(1—0.93V*'®  where settingv* 4r
=V,/V, to 2V, gives a reasonable fit to the available data. 3.5F
This observation implies that the algorithm is correctly cal-
culating the coefficient of restitution, which is higher than o
0.93 for cases in which the impact velocity is lower than the g’ 2.5, A b
reference velocity in Eq2). o

3k

Since the number of collisions for whidh, is lower than . 5:_3 %
V, increases with the increasing solid fraction, the simula- ‘ % 2 a o b
tion results for dimensionless granular temperature would be e % ? L
expected to be higher than the calculated values using the 02 03 0(;)1 05 0.6

kinetic theory expressiofi5). s

Simulations were then performed using a system of in- g1, 3. variation 0fQg VN, with solid fraction for both smooth
elastic rough spheres subjected to steady shear. The initighd rough particles. Note th@ts/Nj, for a finite spatially uncorre-
configuration is that shown in Fig(@®, and the solid fraction |ated system is~1.
again varied from 0.16 to 0.58. Two different sets of values
for the surface parameteesand u were used. The first set Note that in this case the shearing motion in hdirection
was that suggested by Lun and Béfg] for steel pucks, induces a mean rotational motion in thelirection of wy~
namely,e,=0.93 andw=0.123. In this case of sticking bi- —1.0lg, s 1. Here, g, represents the unit vector in the
nary collisions, 8, is set to 0.4. The second set was thatdirection.
suggested by Drakp47] for glass beads, namelg,=0.84 Assuming that the particles are uniform solid spheres,
and u=0.41, with B, taken to be zero. A comparison be- the  rotational  temperature is defined as®
tween the results of inelastic, rough particles and those of (ka?/I2N)E{L [ (wix— )2+ (wiy — 0y)? + (wi;— ©,)?],
smooth particles, as shown in Figb® indicates that at the wherew,=1/NZwiy, w,=1NZ w;, andw,= 1INZ;w;, are
same solid fraction, shear rate, and restitution coefficient, théhe average values of the spins in they, andz direction,
frictional grains are cooler than the frictionless grains. respectively. Herd represents the total number of particles

Figure Zc) plots the variations of local dimensionless in the computational box. The dimensionless rotational tem-
translational granular temperature in longitudinal and lateraperature in the direction of the velocity gradient may be de-
directions in the direction of the velocity gradiefmtamely, fined as®* = k=;(w;,— w,)%/(4N&?). As seen in Fig. @), a
the z direction. The nearly flat profiles in Fig.(2) are char-  normal distribution with zero mean and variance of 3.75,
acteristic of unbounded simple shear flows with small ampli-which is shown by a solid line, provides good approxima-

tude local fluctuations. Moreover, the distributions of dimen-tions for spins in thez direction. Usingx= 2 for a uniform

sionless fluctuation velocities;; , vy, v; , are Gaussian solid sphere@* for the aforementioned case was found to

with standard deviationsTx 2, T} "%, T5'2, respectively, be close to 0.1. In this case, the difference in tatatational
about the mean value zero as shown in Figl) 2Here, the  plus translationalfluctuation energy of the systems of rough
dimensionless fluctuation velocity is definedvis=v/ce. A and smooth particles could be due to the fact that in the
comparison between results of the numerical simulations fosystem of rough particles, the dissipation into thermal energy
T* in the longitudinal direction, namelyl;} , and those as- occurs by means of both friction and inelastic collisions.
sociated with the lateral directions, namely; and T} , as To investigate the signature of order in the sheared granu-
depicted in Fig. &), suggests that the translational granularlar system, the variation @+/N,, (instead 0iQg) as a func-
temperature is not isotropic in simple shear flows of a granution of solid fraction for both smooth and rough particles is
lar assembly. As shown in Fig(&, the translational granular given in Fig. 3. As mentioned earliefQGJN_b~1 for a spa-
temperature profiles are also flat, implying that similar be-tially uncorrelated system. Using this normalized value the
havior exists for unbounded simple shear flows of rough aneffect of having different number of bonds for different sam-
smooth grains. Moreover, there is no effect of particle roughplings can be removed. A@4+/N, approaches 2.5, there is
ness on the form of velocity profile. It can be seen from Figsstill significant disorder in the system. Note that the value of
2(c) and Ze) that the ratio of the dimensionless translationaIQG\/N_b for a system with cuboctahedral symmetry could be
temperature of smooth steel balls and rough steel puckswven higher than 100. Hence, the structural changes that oc-
T§Smoot,4T§,ough could be as large as 3 at a solid fraction of cur during the process of increasing the solid fraction are
$,~0.4. Therefore, the difference in translational temperasmall and the system remains disordered even at high solid
tures suggests that shearing of the rough particles inducdgactions. This indicates that as the solid fraction is further
rotational motion. It should be noted that for both of theincreased the grains may become frozen and a noncrystalline
aforementioned systems the initial values of all spins weresolid (hamely, a glagsmay form. An increased understand-
set to zero. The evidence for generation of rotational motioring of the glass transition could provide insight into the dy-
in the shearing motion of an assembly of rough particles imamics of spatiotemporal fluctuations in a dense slowly
illustrated in Fig. 2f), which presents the probability density evolving granular system. Unfortunately, computer simula-
distribution of particle spins for a configuration of particles tion results such as those presented here may provide only
with the surface parameters ef=0.93, ©=0.123, andB, limited insight, since hard-sphere models may not be ad-
=0.4 at the shear rate of 2% taken after X 10° collisions.  equate to capture cooperative motion, such as the rearrange-
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(a) FIG. 4. (a) Left: Variations of
a normalized solids fraction of
light particles as a function of di-
mensionless distance in thedi-
rection at different dimensionless
times t*. Squares are at*=0,
left triangles are at* =30, circles
are att*=39. The total solids
fraction is®,~0.2 ande,=0.93.
The solid lines represent analyti-
cal solutions(18) for which T3 is
given in Fig. Zc) (right triangles
ando* ~0.034.(a) Right: Mixing
of light and dark particles in the
computational box at* =39. (b)
Left: Variations of a dimension-
less solids fraction of light par-
ticles as a function of dimension-
less distance in the direction at
different dimensionless times'.
Squares are at =0; left triangles
are att*=30; circles are at*
=39. The total solids fraction is
®.,=0.45 andey=0.93. Thesolid
lines represent analytical solutions
(18) for which T} is given in Fig.
2(c) (diamond$ and o*=0.043.
(b) Right: Mixing of light and
dark particles in the computational
box att* = 39.

0.5p

0.25}

(b

0.5

0.25

ment of clusters of grains, which seems to dominate strucHere, the expression for the diffusion coefficient in the
tural relaxation at high solid fractions. direction is given byD,= o w*2TY%[8(1+ ) P9, ], Which

In sheared granular fluids where the interactions betweemay be derived from the kinetic theory of unbounded rapid
the grains lead to correlations between the positions and veganular flowq 25]. The system shown in Fig(& is subject
locities of different grains, the self-diffusion may be inter- to the three conditions
preted as a result of cooperative effects of macroscopic solid

fraction fluctuations. Thus an analysis of particle diffusive z*>0, PF=1
motion may contribute to the understanding of issues such as t*=0, 74<0. ®*=0
cooperative motion in a granular fluid. To this end, shear- ' '
induced dispersions of grains in tkelirection at solid frac- t*>0 z*=1 @@r=1 17)
tions of ®,~0.2 and 0.4 are illustrated in Fig. 4. The side ’ 2 T
view of grains in the system before application of strain in JD*
the x direction is shown in Fig. @). As shown in Fig. 4, as t*>0, z*=1, l =
time evolves, light grains migrate away from the upper re- 9z
ion, causing their solid fraction to decay from its initial _ . L
grofile, with ghigher rate of mixing for Iowgr values of total The solution to this problem is given 18]
solid fraction. 12
To investigate the mixing behavior as shown in Fig. 4, a Ot 7)==+ D o~ ™M2o* 25 VAR 121+ eg) 00
diffusion law may be obtained by assuming that the random- 2 i01
walk-type displacements of grains in taealirection are not :
coupled to these in any other directions. Thus, a dimension- % sin(n) cog 2nmz*)
less mass balance for the light particles may be givef2by nw
(?(I)I* (92q)|* L&nﬂ-) . *
o~ 5 2 o o (16 + o sin(2nwz*) |. (18

A comparison between the analytically obtained solid
In the above equationz*=27/L,, ®f=® /P, D  fraction distributiong18) and those obtained from numerical
=D,/0?e=m"T*Y2[8(1+ ) D], o* =0/L,, and®,  simulations, which are shown by symbols in Fig. 4, suggests
represents the total solid fractions of light and dark particlesthat in the range of solid fractions given above, the grain
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(a)
0.1
3 FIG. 5. (a) Left: Initial con-
0.05E figuration of tracer grains in the
b computational box(a) Right: Dis-
persion of the grains. Squares are
) ~N0 initial positions and circles are po-
N sitions of grains after a short pe-
005k riod of time in a dimensionlesgz
R plane. (b) Variations of (Az*2)
with the dimensionless delay time
. -0.1 ™ at d,=0.565 for the smooth
Y ) particles in an unbounded shear
flow. Triangles and circles are,
(b) =0.84 andey=0.93, respectively.
The solid lines represent linear
0.6 1f fits, with slopes of ¥ . (c) D¥
! . as a function of solid fraction.
1 0.8 Squares are,=0.84, triangles are
0.4’_ i €,=0.93. The upper and lower
N 0.6k solid lines are the kinetic theory
ﬁ "l results, namely,D* = #'21* %2
v : & D 0.4} [8(1+ e(_,)d)Sg_C], yvlth the values
0.2F 8% g : of T¥ given in Fig. Zc), for ey
» ) Agoo ool —0.63.0.84,
I 5 -
0 ‘Oﬁélé, L I ol 1 0 L.
0 2 3 4
-

displacements in the direction are of random walk type ments were evaluated excluding periodic boundary condi-
characterized by a self-diffusion coefficieDt, . tions. At long times where the deviation from the free diffu-
To make the preceding remarks more specific, suppossion regime becomes appare(hZ?) behaves linearly in.
thatN, is the number of tracer grains initially situated about This observation may suggest that the linear Fick's law de-
Z=0 in the computational box, as shown in Figas To scrib_es, on average, the dissipatjon of spontaneous micro-
obtain a better visualization, the normal grains have not beefcopic density fluctuations. In this case the dimensionless
shown in this figure. Due to shearing motion at titwe0, the _d|ffu5|on coeffwlent in the d_|re(_:t|on of the velocity gradient
tracers are spatially dispersed ab@ut 0. The evidence of IS found to beD; =0.05, which is close to that measured by
dispersion is illustrated in Fig.(8), which shows the posi- Bridgwater [18] in the simple shear apparatus, namely,
tions of tracer grains in gz plane taken at two different 0-057. Note that the solids fraction was not reportefl#).
times. At any timet>0 the second moment of the number of As also seen in Fig.(b), at a solid fraction of 0.56, using the
tracers per unit volume\(z,t), represents the mean-square V2lues€o=0.93 an.dl“*:O for the surface parameters in the
displacement of the traces in tlzedirection. That is{[z(t) ~ Simulation results irD; =0.059. The dimensionless transla-
—2(0)]13)=(1/No) fZ2N(z,t)dz. If the tracers are spatially tional temperature in the direction of the yelogty gra@ent,
distributed in a Gaussian such adN(zt)=N,/ T3 , for this case is found to be 1.62. Considering the dimen-
(2\/wDt)exy —Z/(4Dt)], then the self-diffusion coefficient sionless diffusion coefficient®; given in Fig. %b), along
is given by[19] with a comparison between the corresponding translational
temperature3? , it appears that the diffusive motion of par-
((Z(H)-Z(0)]? (AZ?) ticles is mainly controlled by the translational temperature,
2t - o2t whose value is a function of the coefficient of restitutien,
The results also indicate thatcan be adjusted to obtain the
Equation(19) applies when the timéis large compared to value of the dimensionless transverse diffusion coefficient
the average time between collisions of grains. Here the armeasured by Bridgwatdgr8], which was 0.057. Perhaps a
gular brackets denote the ensemble average and the samptessonable value for the coefficient of restitution describing
are taken at time intervalsapart. the surface properties of phenolic resin balls would be in the
Figure §b) illustrates the variations of the dimensionlessrange 0.84e<0.93, but closer to the higher end of the
mean-square displacement in thdirection with the dimen- range.
sionless delay time* = r¢ at ®,=0.56 for smooth particles Figure 5c) compares the theoretical results obtained us-
with surface parameters,=0.84 andu=0. The displace- ing D = 7Y2T*Y2[8(1+ey)Pg.] with those predicted by

(19

021303-10



FINE STRUCTURES IN SHEARED GRANULAR FLOWS PHYSICAL REVIEW &6, 021303 (2002

@ ® justify the use of the Einstein formula for calculating the
oaF 0.35— macroscopic dimensionless diffusion coefficient in the direc-
’ 0.3¢ tion of velocity gradient. From Fig.(8) it is found thatD}
0.3f 0.25¢ =0.0394. This value does not vary with the shear rate. In the
ém» ﬁfd’ o 02F present cases, the average dimensionless translational tem-
Y o0 ' 015 peratureT} is found to be 0.352. Therefore, it can be con-
o1r 30000 o1 cluded that for these cases, the translational temperature in
ok e 0'05'052 =) the direction of the velocity gradienT,, was quadratically
T @, dependent on the shear rate. The obtained value of the di-

mensionless diffusion coefficielt; for the present simula-
tions is very close to the average of the values measured in
the moderately low shear region in the experimeas],

FIG. 6. (a) Variation of (Az*2) as a function of dimensionless
delay timer* at ®,=0.565 and the surface parametegs=0.84,

#=0.41, andBy=0. The solid line represents a linear fitf and . . .
D3 are 0.348, 0.038(b) D} as a function of solid fraction. The which was 0.0397. This agreement, which supports the ear-

squares are,=0.84, u=0.41, andB@,=0; triangles aree,=0.93, ller conjecture that the particle diffusive motion in their sys-
©=0.123, andB,=0.4. tem is governed by shearing motion and that the effect of
gravity could be of minor relevance, is quite impressive.
the simulations at two different coefficients of restitution. It Moreover, this finding may also suggest the value of solid
can be seen that the aforementioned expressioDjorea-  fractions in the experimen{21].
sonably fits the numerical results for systems with a solid It is worth mentioning that at the same solid fraction and
fraction lower than 0.45. However, the simulation results ex-shear rate, particles with smooth surfaces tended to show
ceed the theoretical value at higher solid fractions. In thenore diffusive motion in the direction of the velocity gradi-
present simulations, E¢R) was used to describe the inelastic ent than particles with rough surfaces. Comparing the results
behavior of the grains. Therefore, it is not clear whether thén Figs. 5c¢) and @b), the dimensionless diffusion coefficient
deviations may be attributed to an enhancement of the velo®; of the smooth particles is greater by a factor of about 1.5
ity correlations due to the excitation of slowly decaying co-than that of the rough particles. An explanation for the dif-
operative motions in a dense granular fluid, or to the use oference in the dimensionless diffusion coefficient is sug-
different expressions for the coefficient of restitution in thegested by the observation that the dimensionless translational

simulations and the kinetic theory expression. temperature in the direction of the velocity gradient of the
The presence of long-duration frictional contact betweerrough particles is lower than that of the smooth particles.
particles was reported by Natarajan, Hunt, and Taj2af. It In the absence of any theoretical treatment for predicting

may be speculated that in their gravity driven flow, the gravi-the diffusive motion of rough grains in a sheared flow, the
tational effects contribute insignificantly to the particle dif- dimensionless lateral diffusive coefficient is extracted from
fusive motion in the direction of the velocity gradient, which the data using the Einstein formu(al). The results are il-
is perpendicular to the direction of gravity. The obtainedlustrated in Fig. &), which plotsD} as a function of the
value of the dimensionless diffusion coefficiddf , for the  solid fraction. The dimensionless lateral diffusion coefficient
present simulations of a system of frictionless grains, idor rough grains is smaller than that for smooth grains at a
somewhat larger than the values of the dimensionless latergiven value of the solid fraction. However, the present results
diffusion coefficient measured in the moderately low sheaido not seem to indicate at what solid fraction the transition to
region in the experimentg21], which was 0.0397. Recall the glass state occurs.
that at the extremely high average solid fraction ®f Haff [10] suggested that hard-sphere models suffer from
>0.6, a difference of four orders of magnitude exists be-several limitations including the lack of a realistic model for
tween the values of dimensionless diffusivity in the directionthe contact forces between grains. Thus, the use of hard-
perpendicular to the main flow, measured by Menon andphere models may not be justified when the solid fraction is
Durian[8], and that calculated from the results of Natarajanyvery high and the particle free times are shorter than the
Hunt, and Taylof21]. Assuming that the solid fraction in the duration of the contacts. A related question can then be posed
latter case was much lower than that in the former case, itegarding the extent to which a true model for the contact
may be concluded that the value Bf falls below its theo- forces between the grains affects the simulation results for an
retical value at solid fractions close to the glass transition. assembly of uniform grains subjected to a shearing deforma-
Figure Ga) plots the variations of the dimensionless tion. In the present simulations it is important to note that the
mean-square displacement of rough particles inztd@ec-  probability of finding free times shorter than 10s is quite
tion, (Az*%)=(Az?)/o?, with a dimensionless delay time rare even at a solid fraction of 0.58 for smooth particles, as
7, ashear ratée=4 s 1, a solid fraction ofP,=0.565, and illustrated in Fig. Ta). According to the classical theory of
surface parameters of the second set mentioned abovipact between frictionless elastic bod{dd], the total du-
namely, for glass particles. After 1@ollisions, it was found ration of collision, T, of two identical spherical particles
that the value of the dimensionless diffusion coefficient didwith massm, diametero, and elastic coefficient, is given
not depend on the choice of time origin, which indicates thaby T,=4.347my/o*2]%5v, 5. ThusT, could be as small
the system had attained a steady state. As shown in &l. 6 as 8<10 ° s for phenolic resin particles with diameters of
at long times(Az*2) behaves linearly inr*, which may 18.6 mm used 18] having the normal impact velocity of
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(a) (b)
8 Qo
&
s 3 10" FIG. 7. (a) Probability of par-
107k & ticle free time for two different
g g solid fractions fore,=0.93. The
< g squares ar@~0.2, triangles are
2 @107 . 2
S10%t o 2 ®,~0.56. The straight line indi-
A R cates the power law 3. (b) Di-
5 mensionless mean free time as a
105k éE‘ 10° function of solid fraction. The
- L A . squares are,=0.84, triangles are
10° 10 Free tgn(qye © 10 10 €,=0.93. (c) Probability of par-
ticle free time for two different
solid fractions for the surface pa-
© rameterse,=0.84, 1 =0.41, and
& ° Bo=0. The squares aré~0.2,
10k E10 triangles are ®~0.57. The
5 8 straight line indicates the power
;0 3 & law 728 (d) Dimensionless
=Z10°k §10-2_ mean free time as a function of
E = solid fraction for e;=0.84, u
r_{!10”4 . z =0.41, andB,=0. The solid lines
10%k 210% in (b) and (d) are visual fits
g through the data.
10°k A
L g PR 41
10° 10* 10° 107 10 10

Free time (s)

20 cm/s. At the same impact velocity, the valueTaf for  solid fractions higher than 0.58. The results show that the
1-mm glass particles is one order of magnitude lower tharstatistics of free timer displays a power law distribution,
that for phenolic resin particles. These estimated values foP(7)~ 7~ ¢, with exponenta~2.6, and there is a very small
T. suggest that the hard-sphere model could be of use tsign of short-time cutoff where the uniform distribution
illuminate the basic features of the shear flow of granularcould be observed as approaches very low values. As
material even at high solid fractions. The corroborating evi-shown in Fig. Tc), which compares the statistics of free time
dence is the agreement between the numerical results and thet two different solid fractions, a nearly uniform distribu-
measured values for the dimensionless self-diffusion coeffition is again observed for the whole range of particle free
cient discussed above. times at the low solid fraction of 0.2. Figurédj shows the

It is interesting that at the solid fraction of 0.58, the sta-variations of dimensionless mean free time as a function of
tistics of a timer during which a particle flies freely between solid fraction. At very high solid fractions the mean free time
two successive collisions displays a power law distributionyapidly drops to extremely small values. The results pre-
P(7)~ 7 ¢, with exponenta~3. There is a short-time cut- sented in Fig. 7 suggest that particle dynamics models should
off where the uniform distribution is observed asap- be used to obtain more reliable results at very high solid
proaches very low values. However, as depicted in Fig), 7 fractions.
which compares the statistics oft two different solid frac- At this stage, it is worthwhile to investigate to what extent
tions, a nearly uniform distribution is observed for the wholethe Kelvin-type model of Haff10] for linear viscoelastic
range of particle free times at a low solid fraction of 0.2.  grains at contact mimics the real granular flows. It was sug-

Figure 1b) shows the variations of dimensionless meangested that a linear visoelastic behavior is often found at
free time as a function of solid fraction for smooth particles.small deformations, and that a model based on this behavior
At a specified solid fraction, the granular fluid with lower predicts a constant collision time. Recently, Guf4®] mea-
dissipation ratgand thus a higher granular temperajuie  sured the duration of contact,, as a function of normal
observed to have a lower mean free time. Also, the mean freeelocity at impact,V,,, for frictionless balls striking a flat
time decreases sharply close to a solid fraction of 0.6, whersurface. Although the collisions were dissipative, the results
the glass transition may occur. The condition is even mordor T.(V,) are found to be consistent with Hertz’s elastic
pronounced in the case of rough particles at very high solidheory of impact. In this light, a model is developed in which
fractions, namely, close to the glass transition solid fractiorthe contact of frictionless grains produces a normal repulsive
®,4. From Fig. 7c) it may be concluded that a fairly high contact force whose magnitude is proportional todmpewer
probability exists of finding free times shorter thar & at  of the amount of overlap. In this model for a collision be-
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TABLE Il. A comparison between results for contact time from Foij= (Kné\?j/z"' Gn5~ . R)R with G,(V,)=1.36(V,/V)*®

t d simulations. .
measurements and simulations +0.063(V,,/V,)?® kg/s are shown by a dashed line. H¥fg
represents a reference velocity. A comparison between the

V, Values measuref0] Simulation results

(ml9 T. (M9 T. (M9 results of linear and nonlinear models reveals that the pre-

dicted maximum contact force using the nonlinear model is
2.19 0.97 0.97 one order of magnitude higher than that found using the
2.78 0.90 0.93 linear model. Also a much shorter duration of collision is
3.67 0.83 0.88 observed for the nonlinear model. At the same impact veloc-
4.24 0.81 0.85 ity, increasing the diameter of glass beads to 48 mm de-
4.99 0.79 0.83 creases the difference between the maximum contact forces
5.50 0.79 0.81 predicted by the models as shown in Fi¢h)8 Moreover, the

numerical values for the collision times become closer to
each other. Therefore, the differences between the models’
tween a ball and a flat surface, the normal contact forcgyredictions are more pronounced when the size of grains
during a collision is given b¥,= (K,,8%?+ G, 8- k)k, where ~ becomes smaller. For 48-mm particles a differéptV, re-
G, represents the dynamic damping, which is a measure dftion is used, which is G,(V,)=—52.4(V,/V)""
the energy loss at contact due to inelastic processes.®iere +291.4(/,,/V,)?" kgls.
is a function of the impact velocity, which is calculated using To show that even simple shear flows of frictionless
the e-V,, relationship given irf40]. grains can produce complex structures even in simple situa-
As given in Table Il, using the nonlinear model the simu-tions, simulations were performed for unbounded flow using
lation results forT are found to be in good agreement with about 10000 glass beads. The diameter of beads is
measured valueii0]. The predicted collision times are not =4.8 mm with the material density gf=2500 kg/ni. For
constant, but are a function of velocity at impact. Moreoverthe geometry shown in Fig.(@, the width, length, and
the coefficient of restitution decreases from unity as the norheight of the computational box were each selected to be 10
mal impact velocity increases from zero, in qualitative agreecm. The beads were subjected to a uniform shear, which is
ment with the results given ii34,42,49. For most solid characterized by a shear ratesof 20 s 1. The solid fraction
substances, the coefficient of restitutian,is a function of is close to 0.58. For the linear modél, and vy, are set to
impact velocityV,. Thus the primary issue regarding the 6x10* kg/$® and 3162 s, respectively. These parameters
models for the contact forces between grains is how closelgive a constant collision time of 1x110 * s (for a binary
the model can predict the-V,, relationship. Limited infor-  collision) and a constant coefficient of restitution of 0.84.
mation is available for the-V, relationship for solid sub- The second model is the nonlinear viscoelastic model for
stanceg34,42,49. which a generalized form of the aforementioned nonlinear
The present results highlight the limitation of the particle model is used, by which multiple contacts can be predicted.
dynamics model for linear viscoelastic gra[i2s9,10, which  In this model the damping coefficient is given B;(V,)
predicts a constant collision time, which results in a constant 1.36(V,,/V)¥*+0.063(,/V)?® kg/s. The other model
coefficient of restitution. More limitations of the aforemen- parameter that controls the stiffness of the material, namely,
tioned model are evident considering the results presented i, is set to 2.24 10° Pant’?. The equations of motion are
Fig. 8. Figure 8a) shows the variations of the, y, andz  integrated using fourth- and fifth-order embedded formulas
components of the normal contact force as a function of timérom Dormand and Princgs0] with At~t.,/100.
in a binary collision of two glass beads with diameter 4.8 Both models predict the formation of flattend clusters.
mm. The impact velocity is selected to be 0.56 m/s and thélowever, the nonlinear model predicts a shorter cluster life-
coefficient of restitution is set to be 0.84. The solid linestime as compared to the linear model. However, the maxi-
indicate the results for linear, viscoelastic, frictionless graingnum intraparticle forces are much larger in the nonlinear
obtained using Eq(12), whereas those calculated using model. Recall that in the experiments of Miller, O’'Hern, and
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in the x, y, and z directions as a
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Ir A contact forces between the grains. To address this concern
i the differences between the linear mo¢i2] and nonlinear
0.8F model predictions are discussed below. In the nonlinear
B model, during the contact of grainsandj the former grain
2 06:- feels a force, which is given by
2
:gj 0.4% Fij=<Knaﬁ’z+Gn<vn>«zj-kiJ-)kij—[min pFij-Kij ,Gy(Vy)
0.2F® . e } : } . o }
[ e X| Kii X | r=m== XK | |- VTP (| Ky X | s XK | .
: ., ij Vi ij ij ij vimP ij
03468 10 13 1416 20

Cluster size
Here G,(V,) represents the dynamic damping coefficient in
FIG. 9. Instantaneous cluster size probability density distribu-the tangential direction, which characterizes the restitution of
tion in the computational box &= 0.586. Inset: A chainlike clus- velocity in the tangential direction for nonslipping contacts.
ter consisting of eight frictional particles found in the computationalHere it is assumed tha®,(V,)=3G,(V,)=0.68(V,/V,)*®
box. +0.0315{/,,/Vo)?® kgls.
Using a nonlinear model for beads with=4.76 mm and
Behringer{4], in which 4-mm particles were used, the largestgensityp = 2500 kg/n3, the effective lifetime of the chain is
peaks in the normal stress signal were about ten times thgnd to be as short asx310°5 s, but the maximum intra-
average value of the normal stress. This observation appeakgiicle forces are quite large compared to those predicted by
to be more consistent with the intraparticle forces predictedne |inear model. Again by considering the measured force
by the nonlinear model. o fluctuations in[4] it appears that the nonlinear frictional
In many systems of practical interest the presence of g odel could predict the interactions of grains in dense granu-
long-duration frictional contact between grains has been obyyr flows more precisely than a linear model.
served21]. Thus, the importance of surface friction in flow  Figyre 9 illustrates the instantaneous cluster size distribu-
dynamics of sheared granular flows should also be studieion in a sheared dense granular assembly with a solid frac-
In order to model in a simple way the change of geometricalion of about 0.586 for which particle-particle interactions
contacts during collisions of rough grains, the linear modelyere modeled using the aforementioned nonlinear model.
of Thompson and Gre$2] was used. As suggested[@| the  gyrprisingly, the changes in cluster size distribution are small
parametersy, and ys, which ensure that collisions between \yhen a linear model was used. However, note that the use of
grains are inelastic, are set g3=2ys, which means that peripdic boundary conditions may inhibit the occurrence of
the normal and tangential coefficients of restitution have 3arger structures in a computational box whose length is 21
value of 0.84. The static Coulomb friction coefficiemnis set particle diameters.
to 0.4. In this series of simulations the diameter of beads is  ag discussed above, the ordering of particles as illustrated
o=4.76 mm with the density op=2500 kg/mi. Again the  in Fig. 1 was observed neither in simulations of the un-
width, length, and height of the computational box were eacthounded system of particles with rough surfaces nor in those
selected to be 10 cm and the number of grains in the simyn which the particles were smooth. Therefore, simulations of
lations was 10 187. The grains were subjected to a uniformyounded shear flows of a granular material for which the
shear with a shear rate éf=20s*. The solid fraction is \all effects are significant are required to investigate the

close to 0.586. Contrary to the flattened clusters usingxperimentally observed transition to an ordered state.
smooth particles, here the structures were found to be more

like elongated chains as shown in the inset of Fig. 9.

The nature of the interactions in a dense frictional granu-
lar assembly under a shearing motion can be examined by Methods such as photoelasticityl] can be used to dis-
analyzing the formation and disintegration of the chainlikeplay the contacts between particles in dense bounded shear
cluster presented in the inset of Fig. 9. Using a linear modelflows. However, determining the contact duration between
it was found that the effective lifetime of the chain is of order particles remains a difficult task. In this context, numerical
of 10~ 4 s. This result implies that the use of the hard-spherenalysis could provide some guidance. For instance, the
model, which predicts the mean free time of order 18,  analysis of the impact between grains discussed in the pre-
may produce an incorrect picture of the complex behavioiceding section may be useful in calculating the duration of
involved in the rearrangements of the grains at the solid fracimpact in terms of the size, relative velocity of impact, and
tion of 0.58. Therefore, questions regarding the heterogeneitghysical properties of the solid. The obtained results showed
and cooperativity of granular dynamics in glasses might beéhat the average duration of an impact in the experimental
answered only by using a model that treats the contact forcempparatus of4] could be about 5 10 ° s for glass beads of
between the grains appropriately. diameter 4 mm. It was also found that the duration of impact

An important question to consider at this point is to whatis significantly longer for larger particles. The ratio of the
precision could a linear model as suggestefRirpredict the  impact duration to the particle mean free time was identified

IV. BOUNDED SHEAR FLOWS
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FIG. 10. (a) Dimensionless normal stref% exerted on the upper wall versus dimensionless titnir smooth particles ab;~0.2 and
the apparent shear rateiof 2 s 1, for e,=0.93 ando™* ~0.032. Inset: Distribution of dimensionless velocity as a function of dimensionless
distance inz direction. (b) Variations of the normalized solid fraction of light particles as a function of dimensionless distancezn the
direction at different dimensionless timgs. Squares are at =0, triangles are at* =24, circles are at* =33. The solid lines are visual
fits through the data. Inset: Variation of the total sdlight and dark fraction as a function of dimensionless distance inzki@ection. The
dashed line represents the average solid fractigrivariations of T; as a function of dimensionless distance in #hirection.

as a criterion for selecting the relevant model for the simu=zero. In this light, the particle diffusive motion will be moni-
lation of sheared granular flows. In this light, a modified tored to distinguish a disordered state from an ordered sys-
hard-sphere model, which is an event-driven algorithm, mayem.
not be recommended for a system whose solid fraction is The first case is the bounded shear flow of a moderately
higher than 0.56. For more dense systems, for which théense system of about 10 000 smooth particles. The value of
precise information about the rearrangement of grains is eghe solid fraction including the wall particles is close to 0.2,
sential, a more computationally intensive force-driven algo-with the solid fraction of the wall particles slightly higher
rithm based on the particle dynamics model is recommendedhan that in the bulk. The particles with smooth surfaces,
In this section, simulation results for the hard-spherehaving a coefficient of restitution of;=0.93 and surface
model for bounded shear flows at moderately dense anffiction of =0, are sheared at the apparent rate of 2 s
dense solid fractions, for various values of the phenomendsetween walls separated by a distahce=300. Here, the
logical parameters, are compared qualitatively to the resultgalues of the particle surface parameterand u, for colli-
of recent experiments. Moreover, the predictions of thissions between interior particles and wall particles are taken
model in the presence of gravity are also included, whichto be the same as those for collisions between interior par-
could help to distinguish the effects of different factors in theticles. To ascertain that the period of the run was long
results of the simulation. Then, the rough pictures providedenough for the system to come to a steady state, the normal
by the hard-sphere models are refined by performing simustress at the upper wall was recorded. The time series for this
lations using the particle dynamics model to obtain an in-quantity in a dimensionless fornP,*=P/ppa'2é2, is illus-
creased understanding of dense granular systems, especiatiigted in Fig. 10a). Here, p, is the material density. The
their transitions to a solid phase. eqiulibration period, which is the period during which all
memory of the initial configuration is lost and the system
comes to a steady state, was found totbe-20. Ordering
A. Fixed volume simulations was not found to occur for this case, which implies that a

For the fixed volume bounded shear simulations, the onlptrong particle diffusive motion would be expected in the
modification to the computational box shown in Figais  direction of the velocity gradient. Given the presence of
the introduction of two rough walls with a fixed separation SIrong mixing in the system of smooth particles, an obvious
distance, each comprised of an irregular cubic array of 628uestion is how would the diffusive motion of the grains
massive hemispherical particles with the same diameter gdffer for the cases presented in Figs.(t)0and 4a). Note
the interior particles. Here, the interior particles are driventhat the solid fraction of the bounded flow in Fig.(biDis the
into shearing flow by moving the top and bottom walls at aS@me as that of the unbounded flow of Figg)4To address
velocity V,, in opposite directions along the direction.  this question, the diffusive motion of grains in a bounded
Thus, there are no periodic boundary conditions in the direcShear flow at moderately high solid fractions is analyzed in
tions normal to the walls, which are locatedzt =L /2.  the following section.

The simulations in this section are organized to investigate
under what conditions the results presented in Fig. 1, in
which smooth steel balls were used, can be reproduced. Note
that it is likely that the granular assembly in Fig. 1 was The local descriptions for the velocity field¥(z)*
highly cooled, resulting in the formation of an ordered crys-=[V(z)/V,]e, at t* ~30, as illustrated in the inset of Fig.
tal. As a result, the granular assembly had undergone a stru@f(a), are obtained in the same way as described in the pre-
tural arrest, where self-diffusivity of the grains becomesceding section. It is interesting to note that large slip veloci-

1. Lateral diffusive motion in a moderately dense bounded flow
of smooth grains
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ties exist at the walls. Since the rate of temperature generavhere x* =2x/L, represents the dimensionless distance in
tion is controlled by shear work, these slips result in a largethe direction of mean flow.

translational temperature near the wall, as shown in Fig. Equation(25) provides a convenient picture for the par-
10(c). The energy is transferred by means of thermal diffu-ticle diffusive motion in the lateral direction, for which the
sion to the colder central region, in which the rate of energyprofiles of temperature and solid fraction are shown in Fig.
generation is lower due to the moderate velocity gradient10. Since no simple solution exists for E5), it was sug-
Thermal diffusion is caused by the relative motion of thegested in21] that a simplified form of Eq(25), namely,
particles due to the presence of a translational temperature

gradient. The drift induced by the temperature gradient, in a ap . &p

dimensionless form, may be characterized in terms of the &t_*:_DZF’ (26)
thermal diffusion coefficienf26] D+, which may be given

as

might be of use in predicting the particle diffusive motion far
* from the walls in the fully developed part of their channel.
ainT . . .
put =—pD¥———. (21 Equation(26) addresses the local aggregation and redisper-
9z sion of particles in the above-mentioned regions, which cre-
ate local density fluctuations. Assuming that these fluctua-
In the above, is the particle number density; =u,/o¢  tions dissipate according to Fick's law, an expression may be
represents the dimensionless diffusion velocity in the direcoptained for the diffusion coefficient, namely, E¢L9),
tion of velocity gradientz* =z/o is the dimensionless dis- which should be applied to the time regions where the mean-
tance,e is the apparent shear rate, and the dimensionlessquare displacement varies linearly with
thermal diffusion is defined a®% =D /o%. In addition, if
not all of the particles in the system are sheared uniformly as 2. particle diffusive motion and transition to order in dense
may occur in systems such as|i2l] [also see Fig. 1@)], bounded flows
then particles could migrate from the high-shear region at the
wall to the low-shear region in the center. The drift induced
by stress may be given as

The validity of Eq.(19) is questionable for a dense system
whose local description for the velocity field, solid fraction,
and temperature are given in Fig. 11, where the coefficient of
ap U*(2) restitution ise;=0.84. However, in the absence of a more
—B* (22) reliable theory for the treatment of particle diffusive motion
in dense granular flows, E@L9) is used to estimat®} for
the tagged particles initially located at0.1<z<0.1 in the
central region, where the gradients may not be present. Dur-

puz =B

where B* =Bg¢ is the dimensionless particle mobility and
N -\ 2 . ) .
U*(2)=U(2)/(oe)° represents a dimensionless potent|al.ing the period of sampling of*~3, no tagged particles

Approximate expressions for the particle mobilyand the were found to enter the wall region, in which neither the

potential U for a moderately dense system comprised Ofgtre s of gradients can be neglected nor the use of linear
smooth particles are given in Appendix.

) e . laws such as those used to obtain Ef) is justified. Figure
. The apove-.mennoned drifts |n.duce a part!cle number den'11(f) illustrates the mean-square displacement inztbleec-
sity gradient in the system, which results in a flux of the

. ) ) tion for the tagged particle$Az*?), as a function of* . At
particles from the centra_l region towa_rds the wall. Thls quonng times, (Az*2) appears to behave linearly i with
caused by Fickian diffusion may be given as follows:

D3 ~0.054, which is very close to the values of the dimen-

sionless diffusivity measured in the experiments of Bridgwa-

(23)  ter[18]. It is worth mentioning that the calculation is based
on the local value of shear rate, namely, 1.3.sThe solid

i fraction and dimensionless temperature in the central region

The ne.t flgx, with respect to the center of mass referencg,q found to be 0.58 and 1.38, respectively. The high granu-

frame, is given by the sum of the fluxe1)—(23): lar temperature in the central region, which resulted in a high

ap
pu;:_D;caz* "

value forD? , namely, 0.054, could also play a role in the
dInT* dpU*(2) d . : ; - L -
pu =—| pD* +B* p +D* p stability of the flow. This observation also highlights the sig-
z Jaz* Jaz* zoz* )"

nificant role of T* in the particle diffusive motion in the
(24 lateral direction.
To focus on finding the dominant parameters in the sta-
Substitution of this expression for the flux into the equationyjjity analysis for the bounded flow, in the above-mentioned

of continuity [52] yields the following result: simulation of smooth particles using the modified hard-
sphere model, the solid fraction is increased to a value of
p —V*(2) dp I D JInT* 0.59 and the apparent shear rate is decreased té fosthat
atx ax* oz [P a9 the local shear rate is nearly the same as that of the previous

case. Although this solid fraction is beyond the recom-
(25) mended range of applicability for the hard-sphere model, the
' simulation results could nonetheless provide a rudimentary

dpU*(2) d
—|—B*%+D’Zk Z
0z 0z
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FIG. 11. (a) Dimensionless normal stres®* exerted on the upper wall versus dimensionless tifndor smooth particles at
~0.565 and the apparent shear ratesef4 s !, for e,=0.84 ando*~0.048. (b) Projection of interior particle positions onto the
dimensionless/z plane for the sample taken &t ~60. (c) Variations of the local solid fraction of the sample shown(lm with the
dimensionless distance in talirection. The dotted line corresponds to the solid fraction obtained using 42 thingriations of the local
dimensionless axial velocity(Z)* =V(Z)/Vy, with Z*. (e) Variations of T with Z* for the apparent shear=4 s 1. The solid lines in
(0)—(e) are fits.(f) Variations of{Az*2) with the dimensionless delay time& for the tagged particles initially located at0.1<Z*<0.1.
The solid lines represent linear fits.

insight into ordering in dense granular systems. As seen ithis case, due to the enhancement in the rate of particle-wall
Fig. 12a), the period of equilibration is long. The projection collisions and also the limited displacement in the vertical
of the position of the interior particles onto tgeplane of a  direction, the particles are moved along horizontally with a
sample taken at*~100 is illustrated in Fig. 1(). As  velocity more correlated to that of the wall particles, which
shown in this figure, the system had become ordered with thegsults in a smaller wall slip velocity. This observation sug-
crystallized regions visible at—0.3,0)x(—0.1,0.2) and gests that the causes of smaller wall slip velocity at high
(0,0.3)x(0.21,0). Figure 1@) plots the variations of solid solid fractions may be understood in terms of the relationship
fractions in the direction of the velocity gradient. Contrary to between the particle-wall and particle-particle collision rates.
what is observed in Fig. 18), this profile exhibits spikes in ~ As shown in Fig. 12), the lower production rates at the
the central region, indicating the presence of layers of orwalls result in local temperatures that are below the melting
dered particles in the system. Perhaps the most noticeablemperature for this system, which leads to a transition to
difference between the present case and the previous caggder. The results obtained suggest that rapid shear flows of
can be found by comparing the steady-state values of themooth particles, at a very high solid fraction, become un-
dimensionless normal stress at the walls, as shown in Figstable with respect to a density wave in the direction of the
11(a) and 12a). It is surprising that the dimensionless nor- velocity gradient. The phase transition as discussed above
mal stresses at higher solid fractions tended to be lower thadccurs when variations of the density and velocity fields are
those generated at lower solid fractions. The difference irtomparable to a particle diameter. In order to predict this
stresses could be due to the smaller wall slip velocities, aBehavior a theory should be devised which captures the criti-
illustrated in Fig. 12d), which lead to the corresponding cal wave number regime at intermediate wave numbers
smaller rates of energy production. At high solid fractions,where the static structure fact§(k,) has its maximum, as
for particles in a layer adjacent to the wall, an enhancemerghown in Fig. 13. This figure illustrates the static structure
in the particle-wall collision rates may be observed. Thefactor of a sample illustrated in Fig. (8 taken aftert*
movement of a tagged particle away from the wall after a~100. The static structure fact@(k,) was obtained from
collision is limited due to the presence of a dense layer ofhe initial value of the intermediate-scattering function, de-
moving particles in the neighboring layer below the particle.fined as[53]

Upon colliding with a neighboring moving particle, a tagged

particle is likely to travel back towards the wall particles. In F(k,t)=(Q(k,00Q(—k,t)), (27)
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FIG. 12. (a) Dimensionless normal stre$¥* exerted on the upper wall versus dimensionless ttfndor smooth particles atg
~0.59 and the apparent shear ratezef2 s 1, for e;=0.84 ando* ~0.048.(b) Projection of interior particle positions onto the dimen-
sionlessyz plane for the sample taken gt~ 100. (c) Variations of the local solid fraction of the sample showr(ihnwith Z*. The dotted
line corresponds to the solid fraction obtained using 42 bidsVariations of the local dimensionless axial velocé{Z)* with Z*.

(e) Variations of the local dimensionless translational temperature in the direction of velocity graglievith Z* for the apparent shear
£=2s 1. The solid lines in(d), (e) are fits.

where Q(k,t)le’ZEjzlexp[ik- ri(t)]. Here, the attention bers where structural effects are expected to be strongest is
is confined tok vectors in thez direction. The smallest wave near the first peak. It is interesting to observe that the second
numberk, that can be studied is72L,. The dimensionless peak inS(k,), as illustrated in the inset of Fig. 13, becomes
variable k,o is used to express the structural correlationlonger than the first peak. This observation may suggest the
shown in Fig. 13, which provides a useful guide to structuralpresence of regions of cuboctahedral symmetry in the com-
effects on fluctuations. As seen in Fig. 13, the height of theyutational box. Comparing the present results with Fig. 1, the
first peak reaches a value of orderThis indicates the pres- hard-sphere model appears to be capturing qualitatively the
ence Of a neal’-pel’fect |ayel’ing intO planeS W|th We”-deﬁne(how behavior for a W|de range Of ﬂOW Conditions_
layer spacing as seen in Fig.(b2 The region of wave num- In order to show that the ordering transition persists and is
not merely an artifact of the cubic computational box, the

N . i
0 4 8 ycfz 6 2 gap between the walls is reduced by approximately half. The

7500 i initial configuration of interior particles projected onto tye
00 plane is shown in Fig. 14). To keep the solid fraction the
Q same as the previous simulation, namely, 0.59, the number of
5000 @ interior and wall particles was reduced to 4296 and 400,
_ 0 respectively, withL ,~100. The results for this run indicate
% a transition to order, evidence of which is shown in Fig.

14(b), which represents the configuration of interior particles
2500 projected onto thgz plane. Using the smooth particles, the

stick-slip dynamics is observed in the time series of dimen-
sionless normal stress, as shown in Figdl4This result is

0 consistent with the recent findings by Miller, O’Hern, and
¢ 3 kl((), 15 20 Behringer{4], who have found that the stick-slip motion may
‘ vanish upon increasing the separation between the walls
FIG. 13. Static structure fact@(k,) of a sample whose projec- [54].
tion of interior particle positions onto the dimensionlggplane is A similar behavior can be observed by comparing the
shown in Fig. 12b). Inset: Static structure fact@(k,) of the same time series of dimensionless normal stresses obtained at the
sample. same solid fraction, but with different separations between
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FIG. 14. (a) Projection of the positions of the interior particles onto yaglane at the onset of shedéb) Projection of the positions of
the particles onto thgz plane at the steady-state condition for rough particle$ at0.59 and the apparent shear ratesef4 s 2, for
e,=0.84 ando* ~0.1. (c) Variation of the local solid fraction of the sample shown(lim as a function oZ*. The dashed line corresponds
to the solid fraction obtained using 17 bins. The solid line is a(dit.Dimensionless normal stre$%* exerted on the upper wall versus
dimensionless timé* at ®,~0.59 and the apparent shear rate:ef4 s * for e,=0.84 ando* ~0.1. () Projection of the positions of the
particles onto thez plane for smooth particles & .~0.59 and the apparent shear ratecef4 s 1, for e,=0.84, 0* ~0.1, ando&?/g
~0.5.

the walls, as shown in Figs. (& and 14d). Stick-slip mo- ticles, set to— 20¢%e, m/s directed in the negative direc-

tion has also been observed in studies of boundary |UbriCQ—i'on_ The accelerations of the wall partic|a§m are assumed
tion [55]. In the present system stick-slip motion may betg pe zero.

associated with the phase transition between ordered static The apsence of a disordered phase in the simulations at

and disordered kinetic states of the thin layer of particlesyg high solid fraction of 0.59 suggests that the strong mixing
separating the moving wall from the crystallized region Io'reported in[21] is unlikely to be predicted for a system at
Cat_?g at (—0'5(’19'5%(9'25’0'18)' | st is about dthis solid fraction. For this reason, the mean bulk solid frac-
of mae rr:teuiir;: ':’;T;:Oir:]etise n()r;rgznts ;ienswillgti?)notjha%nienotrh fibn in [21] should be close to 0.565. Recall that at this solid
lagnitude gre . P . . N&raction the simulation of shear flow of smooth particles with
previous simulation with the same solid fraction but with I i fo~21 ted i disordered oh
different wall separation. The decreased wall separation mo& Wr? separz'l;\ 'on oL~ rD(ILeOSl(J)SeAf N a disordered phase
likely resulted in a different instability behavior, which tAtetIS'ent:a re_gt;|on Vl"('jtbzw e investigate the effect of
caused the system to undergo a transition to a mixture of IS stage it would be usetul lo investigate the eriect o
crystalline and noncrystalline two-phase flow with a neaﬂy}/;/alItis?]pafrgtlé)gsdltitance orn ntthehﬂO\;v ?EZZ”I!]W. V,vAt”the solid
planar interface normal to the direction of the velocity gra-'"action 01U.065, the apparent shear of 4,3he wall sepa-

dient. Clearly, an explanation of this phenomenon requires $tion ofL,~100, and the surface parametezg=0.84, .
theoretical stability analysis, where variations of the density~0: the time series for the dimensionless normal stress is
and velocity fields on the length scale of a particle diametefNOWn in the inset of Fig. 18). The mean value of the
play a key role in the instability scenario. It is worth men- dimensionless normal stress in the interval of 450
tioning that the profile of the local solid fraction, as illus- <350 is found to be 15.5, which suggests tfigt, whose
trated in Fig. 14c), appears to be very similar to that for the Profile is illustrated in Fig. 1@), is large enough to induce
experiments of[29], in which partial shearing occurred. Mixing. As seen from the inset of Fig. &5, the local shear
However, in their system the formation of a nonshearabldate in the central region is nearl;{ constant, with a value very
section adjacent to the bottom wall appears to be caused ijose to the apparent shear of 4°sUsing Eq.(19) to esti-
gravity. In the presence of gravity, as can be seen in Figmate D} for the tagged particles initially located at0.1
14(e), the nonshearable section, whose density is higher tharZ* <0.1, where the effects of gradients may be unimpor-
that of the surrounding fluid, has migrated downward. Intant, results in a value db; ~0.015. According to the pro-
order to take into account the effect of gravity, the collisionjection of the position of the interior particles onto the
times were calculated using the quartic equat®rwith a; , plane of a sample taken &t~ 150, as shown in Fig. 18),
which represents the acceleration vector of the interior parsome order in the central region can be observed, which
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(@) ®) - .
Lol 0.3 1 FIG. 15. (a) Variation T* with Z* for the ap-
Y AR AR N parent sheai =4 s 1. The solid line is a fit. In-
0.9} 30 02 10 %> set: Dimensionless normal str_eBé‘ exe_rted on
25 ;J; the upper W_aII versus dimensionless titrfefor
0.6+ *a.20 < 76 o73] smooth partlclgs a@570-565 and the apparent
s Yok % shear rate ofe=4s"* for e,=0.84 and o*
0.3+ ~0.1. (b) Variations of(Az*2> with the dimen-
1% 75( 150 o sionless delay timer* for the tagged particles
0 %7 1T 0 o1 02 00° i 5 3 4 initially located at—0.1<Z=0.1. The solid lines
z t represent linear fits. Inset: Variations 6tz)* as
© G)) a function ofZ*. The dashed line is a linear fit
whose slope is very close to that of the apparent
0.2 0.2 syraivesvivetirineed : A X ) |
4»» Nveer s eadripdy shear. The dotted line is a nonlinear fit) Varia-
3 & 2R tion of the local solid fraction of the sample
. shown in(d) as a functionz*. The dashed line
N0 N corresponds to the solid fraction obtained using
b _ 52 17 bins. The solid line is a nonlinear fid) The
b b E Ewaabeanerdavid projection of the positions of the particles onto
-0.2 " 02pidteranprnesrpnes ‘¢ the dimensionlesgz plane for a sample taken at
0 02 (g.4 0.6 -0.5 -0.25 8, 025 0.5 t* ~150.

explains the difference between the estimated valugdjof vanishing of the ordered structure present in the initial con-
in the present case and the previous case. Again, this obsdiguration. Two different sets of values were used for the
vation suggests that the separation between the walls playssarface parametersand w, for steel pucks and glass beads,

key role in the stability of the flow. as introduced in the preceding section.
One signature of order in the system is the observed stick-
3. Bounded shear flow of rough particles slip motion in the normal stress signal, as discussed in the

In the preceding section, simulations with frictionless, in- Preceding section. Hence, the absence of stick-slip dynamics
elastic grains at a shear rate of Z*sevealed that an initial in the normal stress signal could serve as a criterion of the
configuration with random distributions of positions and ve-melting. Using the suggested values for surface parameters
locities of particles may finally evolve to a state where an€=0.93, ©=0.123, as illustrated in Fig. 18, the melting
ordered solid phase is formed in a large part of the compuef granular crystals occurred after~170. The inset of Fig.
tational box as illustrated in Fig. 14). Thus, this configura- 16(a) plots the probability densities for the dimensionless
tion was selected as a new initial configuration for a series ohormal stress for both cases after the systems have reached a
simulations, to investigate the effect of phenomenologicakteady state. The observed shear-induced melting in the
parameters on the vanishing of the ordered solid phase. ftiction-dominated system may be interpreted considering
should be noted that the creation of the solid phase is indethe significance of rotational diffusion, which in a monodis-
pendent of the initial random state, but depends mainly oiperse system is a measure of the rate of change of the direc-
the wall separation distance and the mean solid fraction. Théon of bonds joining a particle with its nearest neighbors. In
view of the initial configuration of particles projected onto the aforementioned system the conversion of rotational en-
theyzplane as well as the variation of the local solid fractionergy to translational energy enhances the translational diffu-
in the direction of the velocity gradient are illustrated in Figs.sion, which reduces the bond orientational order. This inter-
14(b) and 14c), respectively. Computations were performedesting combined translational-rotational diffusion process
to explore the importance of the particle roughness on thenay warrant further investigation. More evidence supporting

@ ®

0.7 FIG. 16. (@) Dimensionless
normal stres$* as a function of
t*. Inset: The probability density
function of the dimensionless nor-
mal stress at*>170. (b) Varia-
tions of the solids fraction of a
sample taken at* ~ 170 withZ*.
Inset: Variations of the corre-
spondingV} with Z* at shear rate
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0.1 0.7 FIG. 17. (@) Variations of P*
with t*. Inset: Probability density
function of the dimensionless nor-
mal stress at*>70. (b) Varia-
tions of the solid fraction of a
sample taken at*~70 with Z*.
Inset: Variations of the corre-
15 spondingV} with Z* at shear rate

of é=40s 1. The surface param-
-1 . eters aree;=0.93, ©=0.123, and
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the aforementioned hypothesis is found considering theeproduced using a system whose dynamics are collision
shorter melting time at an apparent shear rate of 40 @  dominated.

shown in Fig. 17a), compared to that illustrated in Fig. The plot of the probability density for the dimensionless
16(a). For the same solid fraction and dissipation parametersjormal stress signals of Fig. @, as shown in Fig. 18,

the rate of melting increases at the higher shear rate, due tuggests that the occurrence of the large forces in the system
higher rotational energy production. The slip velocity at thein which the dynamics are collision dominated is much more
walls also increases, as shown in the insets of Figd)Ehd  likely with the exponential form than with the Gaussian
17(b). form. These considerations imply that in the absence of grav-

It can be argued that the order-disorder transition cannaty, bounded dense granular flows form ordered structures,
be determined reliably by monitoring only the normal stressprovided the dynamics are collision dominated. Considering
at the wall, which represents a macroscopic quantity of theéhat the probability distributions of force in stationary bead
system that may not convey the precise information of thegpacks can be described by an exponential fundt&si, the
local structure in the central region of the system. The vandifference between the signals of the collision-dominated
ishing of the ordered phase may be more reliably monitoredystem and the friction-dominated system could well be at-
by considering the time variations of the invariant quantitytributed entirely to the existence of a solid region as shown
Qs, which characterizes the average bond orientations in & Fig. 14b). More evidence supporting the aforementioned
system of patrticles. Initially, the value @Jg in the ordered conjecture can be found by considering the dimensionless
phasgnamely, 0.0&Z* <0.2 in Fig. 14b)] was found to be normal stress signals in the quasifluid phase adjacent to the
0.5712, which is very close to the value @f for a system bottom wall with the probability distributions of the Gauss-
with cuboctahedral symmetry, namely, 0.574. It was ob4an form. Note that the aforementioned quasifluid phase is a
served that the values @fs decrease sharply for the particle phase having some correlations in the orientations of particle
roughness parameters, such as those for glass beads or stgebters but is incapable of withstanding shear.
pucks, approaching steady-state valuefgfof 0.422 and It appears that a hard-sphere model captures the essential
0.414, respectively, at the shear rate of 4.sThese values physics for describing flow dynamics for a wide range of
for Qg imply that the frictional impulse changes the flow flow even at high solid fractions. However, an important dif-
dynamics between the particles, resulting in a more rapiderence exists between the sheared granular assembly as de-
rate of vanishing of the ordered solid phase for the glasscribed in Fig. 14 and the granular flows reported in R&f.
beads than for the steel pucks. The representative spectra for 2-mm glass beads as presented

By comparing these results with those of real systemsin Fig. 2 of[4] do not display any sign of the periodic nature
such as the results shown in Fig. 1 [i4], it appears that 0.3
neither the simulation performed using the particle surface '
properties of glass beads nor that with the particle surface 0.25
properties of steel pucks fully reproduces the characteristics
of real granular systems. In fact, the Gaussian form for the
obtained probability distribution, as shown in the insets of
Figs. 16a) and 17a), will give an entirely incorrect picture
of the large-scale fluctuations observed in the experiments.

0.2

Probability density
[}
o

Note that the instantaneous local values of the normal wall 0.1
stresses have been found experimentally to be far larger than 005
the mean, possibly as much as an order of magnifddie

"In

0 100 200 300 400 500 600
P

which indicates that the occurrence of these events are much 0
more frequent than what would be predicted with the Gauss-

ian form. It turns out that the major features observed in the
experimentg4], as reported in their Fig. 1, such as the exis- FIG. 18. Probability density function of the dimensionless nor-
tence of instantaneous forces much larger the mean, can ol stressP* of Fig. 14(d).
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in the corresponding signal. Therefore, the nature of the nolustrated in Fig. 14d) could be associated with the periodic
mal stress signal shown in Fig. @ requires further inves- shear-induced melting and reordering of the layer of particles
tigation. To address this concern the signal is further anaadjacent to the wall.

lyzed using a space-scale map of wavelet transfgsis A
simple understanding of the wavelet transform can be ob-
tained by its analogy with the windowed Fourier transform in
the similar time-frequency description of any given signal As speculated by Thompson and Grgz}, the origin of
[57]. A wavelet function can be dilated or translated alongstick-slip dynamics could be periodic dilatancy transitions
the time axist. These operations are characterized by twoand gravitational compactification. They found that at shear
parameters, namely, scalg,for dilation and center of wave- rates below a certain critical value, sheared granular flows
let, b, for translation. Any scale addresses a specific packagere unstable to gravitational compactification. For such
of frequency contents in the wavelet. The stretched waveletsases, only a portion of the material was sheared, while the
that correspond to large scales contain low frequenciegest of the material appeared to be in rigid-body motion be-
while the compressed wavelets corresponding to small scalédsw the shearing grains. This behavior gave rise to a shear-

B. Effects of gravity

have a high frequency content. induced phase boundary between ordered and disordered
The wavelet transform of a functioi{t) using the wave- states.
let ¢ is simply defined a§57] In order to reproduce the aforementioned behavior, simu-

lations were carried out using a collision-dominated system
in the presence of the gravitational acceleratipm/s’, with

t—b
e dt. (28)  the initial configuration as shown in Fig. @}. In the simu-

t—=b) 1 (t—b)?
—a —erx — 2a2 ex

(29

cam= [ f(t)w(
Va lations of this section, about 4300 glass beads were used,
. ~with a diameter of o=5mm and the density ofp
Herea and b are real numbers that vary continuously in a — o500 kg/ni. The width, length, and height of the compu-
continuous wavele_t transform. A suitable type of wavelet foristional box were selected to be 10, 10, and 5 cm, respec-
the present case is the Morlet wavelet, which has been preyely. The value of the dimensionless parametéf/g is set
viously used in the analysis of sound pattefB8]. By using 5 0.5 and the coefficient of restitution is seteig=0.84. So
such a complex-valued wavelet in the calculation of theinat the simulations would as closely as possible resemble
wavelet coefficient modulu€(a,b), the spurious oscilla- the experiments, the bottom wall was fixed and the top wall
tions [57] that could appear in visualizing the wavelet coef-\y45 set in motion with the velocity 6y, =22.5 cm/s pro-
f|C|ent. modulus may be eliminated. The mathe_mat.lcal €Xducing an apparent shear rateiof 4.5 s 1. In the presence
pression of the complex-valued Morlet wavelet is given by ¢ gravity, after a very short time* ~3, the ordered solid
[57] phase, whose density is higher than that of the surrounding
quasifluid phase, completely migrated downward, as shown
+ 5(t—b) in Fig. 14€). After the settling time, a steady motion was
a | observed where three layers of particles flowed over the or-
dered solid phase. These layers are shown in the inset of Fig.
As shown in Fig. 1&), the modulus of wavelet coefficients 20(@), which plots the local solid fraction as a function &f
of the signal in Fig. 1é) shows strong analogy to that of a For these layers located in the regiér 3.2 cm, it is found
sawtooth sweep over the frequencies in Figal9rhe saw- that the value 0fQg\/N,, is 1.85. For this value, the phase
tooth signal is in fact a sine wave that is subjected to dhat is formed over the ordered solid phase may be consid-
frequency decrease beyond a certain time. This frequencgred as a disordered phase. The profiles of the streamwise
slip has been manifested as an increase of scale parameteniglocity component and granular temperature inzfukrec-
the corresponding map of the wavelet coefficient modulustion for samples taken after* >3 are presented in Figs.
namely, larger scales represent lower frequencies. Thus tHXa) and 2@b), respectively. At the low shear rates, the
existence of higher frequencies can also be detected, shovmonstant-volume simulation with only the upper wall in mo-
as the horizontal green thin line at a lower scale in Fig.tion results in a decay in the height of the fluid phase to the
19(b). Note that the scale axis of the wavelet coefficientpoint where no shearing motion is possible. To prevent this
modulus map in Fig. 1@) is identical for the rest of maps in from occurring, simulations were performed in which the
Fig. 19. The origin of the slight period changing shown inupper wall was maintained at a constant load \Of
this figure might be associated with some dynamical insta=~3.0 gN and was connected by a Hookian spring with a
bility in the sheared granular flow. These long lived frequen-spring constankK to a driving motor and pushed with a con-
cies have not been observed in the continuous wavelet transtant velocityV, in the horizontal direction.
form of the signal in Fig. 1@& corresponding to the The simulations were continued using the surface param-
frictional model, as shown in Fig. 18. Here, the wavelet eterse,=0.84, u=0.41. As shown in the preceding section
transform of Gaussian white noise is shown in Figidl%or  of simple shear flow of rough particles, a chainlike cluster is
comparison. In light of the above, it may be concluded thatikely to be formed in this system. After @ollisions the
the nature of the stick-slip motion in the annular Couettegeneralized version of the nonlinear mo@20) in which the
apparatus of4] could be different from that found in the effect of gravity is taken into account was utilized, which
simulations. Apparently, the periodic nature of the signal ashould be valid at any solid fraction. The preliminary results
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FIG. 19. (Color) Continuous wavelet transforrte) Modulus of wavelet coefficients of a signal of period changing from 0.02 to 0.028 s.
(b) Modulus of wavelet coefficients of time series Rf at shear rate of=4 s ! and the surface parametersey=0.93 andu=0. ()
Modulus of wavelet coefficients of signal in Fig. (&Y at 100<t* <150. (d) Modulus of wavelet coefficients of a Gaussian white noise.

of the dimensionless normal stress at the bottom wall in thean withstand shear. The profiles of the local solid fraction
steady-state condition are shown in Fig.(@0Apparently and the local velocity, as illustrated in Fig. 20, should be very
the signal is somewhat nonperiodic and the stick-slip dynamsimilar to those for the experiments §29] in which the
ics can clearly be observed in the time series of dimensiondilatancy of granular assembly was reported. It is quite likely
less normal stress. However, longer simulations are requirettat in their system the nonshearable section adjacent to the
to obtain a more refined picture of the shearing motion ofbottom was ordered. The signature of an ordered phase can
granular materials. also be seen in the background of the inset of Fig. [l4in

It is worth mentioning that the vertical motion of the up- Therefore, it may be speculated that during the compaction
per wall in the opposite direction of gravity was observed.period, while the upper wall moves downward, the disor-
This motion, which could be due to the dilatancy of the dered layers of particles flowing over the ordered solid phase
granular material, might be linked to the formation of chainsare compressed. At moderate shear rates, the thickness of the
in the granular assembly. Convincing evidence may be foundisordered layers is about three particle diameters. Therefore,
by considering the presence of an ordered solid phase thatnumber of chainlike clusters could easily form in the com-
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FIG. 20. (a) Dimensionless velocity* as a function of distance in thedirection for glass beads under gravitational compaction process.
The top wall was set in motion horizontally with a velocity 8§, =22.5 cm/s producing a shear ratesot 4.5 s 1 with 0£2/g~0.5. The
thickness of the nonsharable region is about 3.2 cm and the thickness of the disordered phase is 1.5 cm. Inset: Solid fraction as a function
of distance in the direction.(b) Dimensionless translational granular temperafiifeas a function of distance in thedirection. The solid
lines are nonlinear fit9.c) Typical time series for the dimensionless str@¥sas a function of dimensionless tin& obtained using the
generalized version of the nonlinear model in which the effect of gravity is taken into account. The simulation parameters are same as used
in (a).

pressed disordered layers between the upper wall and trstant volume, at values of the solid fraction larger than 0.58
ordered phase, resulting in the cessation of the shearing masing hard-sphere models. For these systems, the particle dy-
tion. In order to have continuous shearing, the granular asaamic model was found to more closely predict the forma-
sembly would then have to dilate. It is of great interest totion of clusters when nonlinear viscoelastic grain behavior
find out whether chainlike clusters would form during the was assumed, as opposed to previously proposed linear mod-
dilation period. To this end the processes of formation an%|s[2,9,1q_ An even more reasonable representation of clus-
disintegration of clusters were carefully monitored. It ap-ter formation was found by including the effects of surface
pears that some arches could also form during the dilatiogiction in the model. Comparing the simulation results with
period at the moderate shear rates mentioned above. HoWse resyits of experiments in which force fluctuations were

ever, at high shear rates where the thickness of the disorder%’easureqﬂ it was found that a nonlinear model for the

![?g/r?:;olilgukl)tg Lirg:étae(;n(_)I_rheezrg%%t:e?sggg#sLésnﬁgﬁggr:ﬁemuqr/;l_scoelastic frictional grains could predict the behavior of the

: P ) . . chainlike clusters more precisely than a linear model. How-
derstanding of the complex processes involved in the EXPETE jer, neither frictionless nor frictional particle models were
ments of Refs[4,29]. The stick-slip phenomenon in granular ' P

flows is an interesting phenomenon that merits further inves(-:"’lpable of pred|ct|'ng_observed. particle order[ﬁ@; n un-
tigation. bounded flows. It is likely that in the system in which the

wall effects are not significant, the sheared granular assem-
bly transforms to a glass state at solid fractions above 0.58.
Particle ordering was predicted using the modified hard-
The shear-induced motion of granular assemblies comsphere model for simulations of frictionless granular systems
prised of a large number of viscoelastic, monosized, spherin bounded shear flows even in the absence of gravity. It was
cal particles in both unbounded and bounded systems wadso found that the local solid fraction and the wall separa-
investigated using computer simulations. The solid fractiortion distance govern the stability of the flow. Values were
was varied from a low density system of 0.16 to a very highdetermined for the solid fraction and the wall separation dis-
density system of 0.59. Two different models were used fotances at which a transition to order occurs. In these systems
predicting the flow dynamics of granular assemblies, namelythe presence of an exponential behavior of the probability
the modified hard-sphere model in which collisions betweerdistribution function was found in the normal stress signals
the grains are assumed to be instantaneous, and the marrerted on the wall, consistent with experimentally observed
computationally intensive particle dynamics model in whichforce fluctuationd4]. Wavelet transform analysis was used
the collisions have finite durations. A Hertzian-type modelto show the existence of a characteristic frequency in the
for the treatment of the viscoelastic behavior of the particlesiormal stress signal, indicating the presence of stick-slip dy-
in contact was also introduced. namics. For the range of shear rates studied, the simulation
The modified hard-sphere model was shown to replicateesults for the rough model did not show the same stick-slip
reasonably well some of the results predicted by kinetidbehavior due to the vanishing of the ordered solid region
theory[25] at low and moderate solid fractions. Furthermore,caused by the presence of strong frictional interactions. Re-
this model was found to predict the basic features such asall that in[6] no order was observed using rough particles in
particle lateral diffusive motion in real sheared granularthe experiments.
flows, even at a high value of the solid fraction of 0.56. The diffusive behavior of particles at moderately dense
However, it was found that it would be difficult to simulate solid fractions in bounded flows was analyzed using a com-
complex phenomena, such as jamming in systems with corprehensive model based on the revised Enskog theory of

V. CONCLUSIONS
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granular fluids and on Grad's method of moments. Formahndn®, are sheared at a high shear rate. Due to the presence
expressions were derived for the particle self-diffusion coef-of gradients in the mean flow, random fluctuations in the
ficient, particle thermal diffusion coefficient, and coefficient local mean translational motion of the grains are generated.
of mobility. Additional theoretical study is required to char- Since the particles in a rapid shear flow behave similar to
acterize further the particle diffusive motion in dense sys-smolecules in a dense gas, methods from the kinetic theory of
tems where cluster diffusion seems to be important. dense gasegb9] might be used to describe the motion of
Considering the ratio of the impact duration and the mearparticles in this system. For a nonequilibrium granular fluid,
free time, the hard-sphere model was found to be appropriate the limit of two-body forces between the particles, the
for solids fractions below 0.56. Above this value, a particleprobability that at some instant of tintea particle of kindl
dynamics model is recommended. However, it was shownvill be at locationr and have momentump within the re-
that the hard-sphere model could provide a rough picture ofpective limitsdr anddp may be governed by the following
the shearing flow of the granular assembly even at solid fracequation[52]:
tions above 0.56. It was shown that the rough picture pro-
vided by the hard-sphere model could be refined using the

. . ; . |(1) |(1) [ Im®
nonlinear particle dynamics model. For example, in order todf | of | of | of

consider the effect of gravitational compactification, a study™ 5 ar Jc Jc

was performed in which gravity was considered and the ver- (A1)

tical motion of the upper wall was allowed. The modified
hard-sphere model correctly predicted the formation of a dis-
ordered layer of particles over the ordered solid phase in &lerec is the instantaneous velocity of a particle of kihd
shearing motion of a granular assembly. The simulation&'™ is the force on a particle of kintidue to all other par-
were continued using a nonlinear particle dynamics modelfticles, andF' is the force per unit mass acting on a particle of
which predicted the cluster formation more precisely. Forkind | due to external fields.
these conditions chain formation was found to be quite likely Equation (Al) involves the pair distribution function
in the disordered layers for frictional particles. The interest—flm(z" which is the probability that there is simultaneously a
ing stick-slip dynamics could be clearly observed in the norparticle of kindl in the space elementi¢'dp') about ¢',p")
mal stress signal for the bottom wall. and another particle of kinch, which can be either light or
Fresh interpretations were given for the complex pro-gark, in the space elemerdr(™dp™) about ¢™,p™). Thus, it
cesses observed in experiments of Réds29]. Additional s needed to find an expression for the pair distribution func-
study is required to characterize further the flow dynamics ofjon in terms of single particle distribution functions. If the
a granular assembly. Such a study should lead to the devegarticle contacts can be regarded as nearly instantaneous col-
opment of advanced theories capable of describing complefisions, the distribution functions do not change appreciably
processes in granular flows, which are of real significance ifn a time interval comparable to the duration of a collision,
facilitating the design of practical granular flow systems. Tothe gradients of inhomogeneities are small, and the assump-
complement the simulation studies, additional experimentafion of particle chaos remains valid, Egh1) reduces to the
results should be Obtained, for which vital information Suchgenera|ized Boltzmann equation which governs the tempora'
as solid fractions and particle surface properties should bghange of the single particle distribution function of the par-
reported. The absence of such information limits the adticle of kind|. Since the particle diffusion processes involved
vances in the knowledge of the physics of granular flows thafn a granular fluid are of interest in the present study, the new
could be obtained through comparisons of experimental angariableC'=c' -V, which is the particle peculiar velocity, is
numerical results. introduced in place o€’ into Eq.(Al). As a result, the fol-
lowing kinetic equation is obtaingd9:

ACKNOWLEDGMENTS

The authors would like to thank Dr. Goodarz Ahmadi for df'm(r,C,t)
providing the results shown in Fig. 1. They are also gratefulT
to Dr. Donald Gugan for helpful discussions. Computing
time provided by the Finnish Center for High-Performance

Computing and Networking is gratefully acknowledged. P.Z. P au J du 9 p
th t of the Finnish Acad C Grant =|—-C' . —+|—|:|C'— P o
ij%k_n%,lgjg?es e support of the Finnish Academy, Gran [ C ar+(ar)( aC)+<dt - ac”
d
(1
APPENDIX xf! (r,C.t)+mE:| ffaz[g'm(r,r+0k|{ns})

Consider a granular material consisting of a binary mix-

1 I 4y gm® m
ture of differently colored smooth, spherical particles. For X COF(r+ok,CRY

this system, light and dark colors are represented by sub-  _ jim¢ _ ckiensuf ™ ¢ 0 F" " (r— ok C™ t
scripts| and d, respectively. The particles, which have the gr(r.r=okl{nH F(r.CLOTT (r=ok,CY)]
same masse® and radiic but different number densitie® X (M- k)H (™ k)dk dc™, (A2)
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Hered/dt=a/0t+V-dldr is the substantial time derivative, o' o' J
{n}={n',n" are solid component densities,V dt(Pm P+ pp® o -V
=39_ mmc™sd_ m™ is the mean mass velocity of the

mixture, d™=c'—c™ is the relative velocity of the two par- dy/' t?l/ll
. : : . : . = (1)|__ — ( d'c zp') o—.
ticles of kindl and kindm, k is the unit vector directed along Po™ gt ™ or \Pm pm dt = aC
the line from the center of the particle of kimdto the center — —
of the particle of kindl at contact, andH is the Heaviside NS el 31/! P DI Py
step function. Also, factorg'™ are introduced to take into Pm C 9C

account the difference in position of the colliding particles in
binary collision dynamics, and the resulting increase in the | [ Al " Im
frequency of collisions. Following van Beijeren and Ernst m®C E (W) =5 0m(y)
l/f l/f)
ar

[60], g'™ are chosen to be the mixture radial distribution

functions at contact, which are evaluated as nonlocal func-

tionals of the density fields of the two components in the - _f f f
granular fluid mixture. Thus,

X (&P k) H(CP-l) f™(r,C™, t)f“ (r,c g
(1)
g'™(r,r = okl{ng(r}) 1+ = k 7 In fml(r—cmt)
ey
_gc (O'Hns(r)})
and
+2 fdrqH'”‘q(r,rtak,rq|{ns(r)})(rq_r).7 +---}dkdc‘dc’“>. (A5)
q=I
+0O(V2). (A3) Here ph, and®' are the material density and solid volume

fraction of the particles of kindl. Expressions for the
particle-particle collisional flu®'™ and the sourcelike term

Im H .
In the above equatiorg'cm is the equilibrium value of the X" are given as follows:

radial distribution function at contact for particles of kihd

1 !
andm: @'m(w)z—szfm(w' —yhHka3 (™ K)H(C™ k)

x g™ (e cm o fr,c )

Im s
g¢ (o[{n%(r)})
‘ 1 o] ey
1+—(Tk I In —(|)<1> | +--
=1+, nq(r)JV'mp(r,riak|rq)drq+--- (r,C.1)
A x dk dddc™,
(A4)
1 ) ,
x'm<w):5f”m<¢' Y=yl =™
Here, H'MA(r,r = ok, r9{nS(r))=V'M9(r,r + ok|r9) o o
+30_ n9(r) VM9 (¢ r+ ok|ror9)drd +---, which is X a?(M-KH (™ k) g™ (r,Cm ) f!
q'=1 ( )f ( 1 | ) !
symmetric under the interchange of supersctipgnd m. X(r,C't)
Also, V(r,r+ok|r% and V(r,r+ok|r9) represent Hu- -
simi functions. As discussed earlier, the above approximation 1+—0'k 9 Inf (r,C"Y) g
for the radial distribution function at contact is not quite ar Br, e
appropriate for the present study of a sheared granular flow
xdk dcddc™ for m=1, (AB)

where a spatial preference for collisions is imposed by the
velocity field. However, there is presently no better approxi-

mation available. X'm(lp):f f f m(y — ) o™ k)H(C™ k)glm

To derive the hydrodynamic equations of a granular fluid

mixture, which are valid outside the time regime for which P
Eq. (A2) is exact. This equation is first multiplied byy!, ><fm(l)(r,Cm,t)f'(l)(r,c',t)| 1+iok- —
where /' is any property of the particles of kirld The re- ar
sulting equation is then integrated over the instantaneous ve- fm® m
locity ¢, to give the equation of change for the assembly of In (r.C t) .V dk ddde™
particles of kindl in terms of the mass-weighted mean val- '(1)( c')
ues:

for m#1.
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The equations of conservation of mass, momentum, and

energy for a granular assembly of kihanay be derived by
taking ' in Eq. (A5) to be 1,C', andC'?, respectively.

(i) Balance of mass

W2 e L = A7
dt pﬂr ar(PU)_ ’ ( )
wherep'=p! @' is the apparent density and is the diffu-
sion velocity of particles of kind.

(ii) Balance of linear momentum

,dV! dv v

p __Vli ~(pIVI)= _ i -H|+p|E—pl——pl— _VI
dt ar or dt or

d
+ 2 xmeh, (A8)

PHYSICAL REVIEW &6, 021303 (2002

+znmp'[(am+a')+%(1—e0)(am—a')]>, (A11)

20
Tn' d (nm
n™or | n

x'"‘<<:>=02<1+eo>g'cmp'nm[§o

12
—3(nT)M(u'—u™) + 55

T

(a'—am)},

(A12)

d
T J
Y= Z 20'2(1—eg)g'cmnmp'T[(wT)llz— —o—-u
m=I 4 or
(A13)

In the abovea'™ is the pressure deviata™ is the transport
pseudothermal energy flux vectay, is the coefficient of

whereV' andII' are the velocity vector and the macroscopic restitution, andV/ar is the nondivergent symmetric part of

pressure tensor of particles of kihdrespectively.
(iif) Balance of kinetic energgpseudothermal energy

§ n'ﬂ—Ti-(n'a) =—£~q'—y'—l‘["ﬂ+ =l
2 dt or or tor p

TG Rl A9

PC- g (A9)
whereT=1/3C'"* is the mixture pseudothermal energy,is
the energy flux vector of particles of kindandy' is the rate
of energy dissipation of particles of kingber unit volume of

the mean mass mixture velocity-gradient tensor.

For steady shear flow, the energy supplied to the grains by
continuous shearing is balanced by the energy dissipation
due to inelastic collisions, and EGA9) reduces to the fol-
lowing form:

d d
_ T oot
O_mE:| [pma<)?;>+gl (1+eg)p™nPo® ?p{l_s(a@?;)

}é(z)

tp
+ A(xy)

)— o (7T)V%(2)

the mixture due to the inelastic nature of the collisions. The d d

effect of the thermal energy on the particle elasticity is not

considered in the present treatment.

Assuming that the rapid shearing motion of a binary mix-

+2 2 2p"o%(1-e))glPnPT(wT)
m=| p=1

(A14)

ture of differently colored granular fluids can be adequatelyin the above equatiory(z) is the local rate of shear.
described by the consideration of the 13-moment approxima- Expressions for the pressure deviataf§/> and azrfw are
tion [61], expressions for the macroscopic pressure tensagiven as follows:

IT', energy flux vectoq', and sourcelike termg'™(C') and
' are given as follow$25]:

d
™
I'=(p'TI+p'a™)+ X (1+eg)p'nmogl"| =TI
m=1

3
V)I ,

(A10)

o

NV 5(a
_+__

T 4
__(afl tmy_ 1/2 .
tg@ tat) T ee(n D)™ 2ol o

d
q'=3p"(TV' + %a')+mE:I o?’glcm(1+eo)< —a(nT)¥2

m_l_1 man' ,on™
6 (1=&)|n ar " ar

X

1.m |07T
BT

+mn"p! T2 (u™+ U+ 2(1—ep) (U™—u')]

d

pgl o?(1+e0)gl"nPp"(wT) ({3 + 5[ 2+ (1—ep)}aly,

+{E[2+(1-ep)]-3}a/h)

d
= —p“T< 1+ >, mo(1+eg)glPnP
p=1

x{—%[1+(1—e0)]+%}>é(z), n=1,d. (A15)

Equation(A15) can be inserted into Eq4A14) to obtain Eq.

(15) for the mixture. It is worth mentioning that EGA15)

may be derived from the balance law for the deviant part of

the mean of the second moment of velocity fluctuation, by

assuming that the spatial gradients of the mean fields are
small, and that the dimensionless quantiiigs, o/t,T5?,

u/T3?, udTy?, al'ITy, a'T,, a'1TE?, anda®/ T3 are all
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of the same order of magnitude and small. Héreto, and  Substituting fora/,,, and a/y, from Eq. (A15), assuming

T, are the characteristic length, time, and mixture granulathat the parameteF/&(z)? does not change significantly in

temperature, respectively. the direction of the shear gradidi6?], gives a reduced form
Assuming thatu,~ul<(ul—u), and that ¢,—u®)TY?  of this drift,

and @, —ad)T~?are of the same order of magnitude, in the

presence of nonuniform shear stress in the direction of shear Iyl =

gradient, namely, the direction, the balances of momentum P

(A7) in the direction of the shear plane for particles of kind
for which n'>n%~n, may be reduced to

oT? d
_ (A
57743 —eg)2(2%)az P V)

(A17)

where the term in the bracketsB=oTY157Y43
—ep)&(2)?, is the particle mobility and U={2(1
+e0)g. P18+ 3eg(— 2+ ) — 7]+ 57}&(2)? is a potential
field, which is a function of position. The term on the right
side of Eq.(A17) represents the contribution of inhomoge-
] neous shear to the drift as well as the extra diffusive flux

5Tl

d
d T
plulz:E[p a<XZ>+p§=:I (1+e0)plnp0-39c E—)(a(T)I(z)+a(T)?z>)

—Zo(nT)Y%(2) (A16)  arising from viscosity gradients.
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