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Fine structures in sheared granular flows
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Computer simulations were used to investigate shear flows of large numbers of viscoelastic, monosized,
spherical particles in unbounded and bounded systems with solid fractions ranging from 0.16 to 0.59. A
modified hard-sphere model with inelastic, instantaneous particle interactions was found to replicate some
results predicted by kinetic theory in an unbounded shear flow at low and moderate solids fractions. This model
was found to predict features such as particle lateral diffusive motion even for systems at solid fractions as high
as 0.56. However, for higher solid fractions where phenomena such as jamming could occur, a particle
dynamics model accounting for particle contacts of finite duration has been developed, in which the viscoelas-
tic behavior of the particles was represented using a nonlinear Hertzian model. The nonlinear viscoelastic
model was found to give more reasonable predictions for cluster formation than previously reported linear
models, especially when accounting for surface friction in the model. However, neither frictionless nor fric-
tional particle models could predict particle ordering in unbounded flows. As such, simulations were performed
for bounded systems using both the modified hard-sphere model and the nonlinear particle dynamic model. For
a bounded shear flow, particle ordering could be predicted by the hard-sphere model even in the absence of
both particle friction and gravity, with the local solid fraction and wall separation distance governing the flow
stability. For these conditions chain formation was found to be quite likely in the disordered layers for
frictional particles. The interesting stick-slip dynamics could be clearly observed in the normal stress signal at
the bottom wall. Interpretations were proposed for the complex processes observed, which could lay the
foundation for further investigations in sheared dense granular systems.
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I. INTRODUCTION

The progression of a nonequilibrium, dense, disorder
granular assembly toward its steady state under shearing
tion appears to be highly complicated. Recently, Cates, W
mer, Bouchaud, and Claudin@1# suggested that in a constan
volume shearing flow of a dense granular material in
Couette geometry, jamming could occur indicating a tran
tion to the glass state which has an amorphous configura
The dilatancy, which is the tendency of dense granular me
to expand upon shearing@2#, could be viewed as the
constant-load counterpart of jamming. Jamming appear
occur due to the formation of anisotropic, nonstraight fo
chains@3,4#, which are linear strings of nearly rigid particle
in contact that can support the shear stress along the c
pressional direction indefinitely@1#.

In contrast to the metastable character of the jamm
process mentioned above, evidence has been reporte@5#
which indicates that the initially disordered configuration
shaken granular monolayers may exhibit a stable crysta
order. Moreover, experimental data@6#, such as that shown in
Fig. 1, suggest that an ordered phase may also be observ
rapid shear flows of smooth granular materials in a tw
dimensional planar Couette geometry. Thus, in addition
their importance discussed in@7#, dense granular flows ma
serve as experimental models for investigating general
tures of the transition to an ordered state from a disorde
configuration. This emphasizes the importance of being a
to predict whether ordering or jamming would occur in
1063-651X/2002/66~2!/021303~29!/$20.00 66 0213
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sheared disordered granular assembly. It is worth mention
that the surface properties had a strong effect on the exp
mental results of Elliot, Ahmadi, and Kvasnak@6#, since they
did not observe an ordered phase for shearing flow of ro
granular materials. This observation highlights the imp
tance of the nature of the interactions between grains
granular systems.

In a sheared, dry, granular system, gradients in the m
flow induce interparticle collisions, which generate fluctu
tions in the local mean motion of the grains. The collisio
involve a nearly elastic deformation of grains whose velo
ties change due to forces resulting from the deformation. T
collision time, which is of the order of 1024 s or less, con-
sists of a compression time during which deformation occ
and a restitution time during which the shape is restor
Since kinetic energy is degraded into heat due to the inela
nature of deformations, external energy should continuou
be provided to granular systems to prevent the system f
collapsing into the solid state, which is characterized

FIG. 1. Snapshot of smooth steel balls from an experiment c
ducted in a two-dimensional Couette geometry. Note the prese
of ordering.
©2002 The American Physical Society03-1
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strong fluctuations of the forces on individual grains.
In the presence of contact friction between the grai

which induces fluctuations in the local mean rotational m
tion of the grains, an additional dissipation of kinetic ener
into heat would be expected. Three types of friction forc
may be distinguished, which are due to rolling, sliding, a
adhesion~sticking! of grains. Sliding friction forces and ad
hesive forces could accelerate or decelerate the rotati
motion of the grains, while rolling friction forces alway
decelerates the rotational motion. However, the physical
evance of the frictional contact between the particles rem
a topic of controversy due to experimental evidence@8# that
suggests that the dynamics of grains may be dominated
collisions rather than sliding contacts even in slow de
flows.

Computer simulations may play a valuable role in d
scribing the macroscopic flow behavior resulting from t
aforementioned phenomena. Attempts have been mad
simulate dense granular shear flows by modeling the gr
as inelastic rough spheres. One well-known method
simulating granular particles is the particle dynamic meth
@2,9–10#. This method assumes that the grains behave
viscoelastic particles that interpenetrate during a collisi
resulting in the generation of restoring forces that can
expressed by Young’s moduli of the order of 107 kN/m2. The
short-range interaction of particles, therefore, may result
large gradient of the interaction force, which implies that t
interaction force between the grains in contact should be
culated about 1000 times during a collision to provide ac
rate results. Presently a three-dimensional simulation wi
large number of particles would require significant compu
tional intensity. As such, a question arises as to whethe
less computationally intensive model could predict the ba
features of sheared granular flows.

Another method for the simulation of granular assemb
is the modified hard-sphere model of Alder and Wainwrig
@11#, which has been frequently used@12,13#. In this ap-
proach, collisions are assumed to be instantaneous and
dissipation is introduced through a coefficient of restitutioe
and a surface friction coefficientm and time advances from
one collision to the next, rather than with an imposed ti
step as used in the particle dynamic methods. Although
hard-sphere model appears to be highly idealized, it can
produce the major features observed in the experiments@13#.

In the present study, the hard-sphere model will be furt
tested against the particle dynamic model to find out h
closely the model can reproduce the interesting beha
such as jamming and ordering in sheared granular flow
high densities. To this end two quantities are introduc
which may be suitable for monitoring changes in the initia
disordered state due to shearing motion. One indicator is
quantityQ6 @14#, which characterizes the average bond o
entations in a system of particles.Q6 is a rotationally invari-
ant combination of the bond order parametersQlm , defined
asQlm5Ylm@u(r ),f(r )#. In order to evaluate the bond orde
parameterQ6 , particles residing within a shell of 1.4s sur-
rounding a given particle are considered as its near ne
bors. Heres is the particle diameter andYlm@u(r ),f(r )#
represents spherical harmonics associated with a bond w
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midpoint is atr , Nb is the number of bonds,u(r ) andf(r )
are the polar angles of the bond measured with respec
fixed external Cartesian coordinates. An averaged value
Qlm over a suitable set of bonds in the sample is given

Q̄lm5(1/Nb)(bondsQlm(r ). Therefore, the quantityQ6 is de-

fined asQ65@(4p/13)(m526
6 uQ̄lmu2#1/2.

A second indicator is the mean-square displacement of
particles, which is represented as a function of time, defi
by ^Dr 2(t)&5N21( i 51

N ^@r i(t)2r i(0)#2&, wherer i(t) is the
particle position,N represents the number of particles in t
computational box, and the angular brackets, which den
the ensemble average, may be generated by using many
origins.

Rintoul and Torquato@14# showed that the first indicato
for a disordered configuration approaches zero at the rat
Nb

21/2 with the expected width of fluctuations of 0.196Nb
21/2.

For example, the value ofQ6 for a system with cuboctahe
dral symmetry is about 0.6@15#, which makes this indicator
useful for distinguishing the glass state, for whichQ6

'1/ANb, from an ordered system, since for both of the
states the long-time value of^Dr 2(t)& @16# remains nearly
constant@17#.

In his experimental study of mixing in granular flow
Bridgwater@18# suggested that the motion of spherical gra
in a simple shear cell is much like a random walk withou
preferred direction of movement. This observation suppo
the use of the Einstein relationship@19# for the estimation of
the diffusive motion, in an average sense, in these syste

Note that in the wall region large variations in veloci
may occur over distances of the order of a few particle
ameters, which leads to particle migration in the directi
normal to the plane of shear, where the particles move
regions of lower stress. As a result of this motion, which
more pronounced in moderately dense granular shea
flows, nonuniform spatial distributions of particle concentr
tion and granular temperature develop in the direction n
mal to the mean flow, which results in ordinary diffusio
along the concentration gradients. In the presence of a st
lateral granular temperature gradient, an extra diffusive fl
of particles may be observed. Under conditions where
flux becomes significant, the application of simplified mo
els could lead to different interpretations of measurem
results in roughly similar apparatus.

For example, in systems where gravity does not affect
lateral particle diffusive motion, at nearly the same so
fractions, a difference of four orders of magnitude exists@20#
between the values of the dimensionless transverse diffu
coefficient, defined asD* 5D/s2«̇, measured by Menon an
Durian @8#, and the values calculated from the results of N
tarajan, Hunt, and Taylor@21#. Here,s represents the diam
eter of the particles,«̇ is the shear rate, andD is the self-
diffusion coefficient. It is unclear whether this difference
due to the inaccuracy of one~or both! of the experimental
procedures~such as solid fraction measurements!, or to some
other reason, such as misinterpretation of the results u
simplified theories.

Analyzing the observations of Menon and Durian, De
niston and Li@22# pointed out that the value of^Dr 2(t)& at
3-2
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long times could be considered as being almost const
indicating that diffusion was very limited. This could be du
to the particles being trapped in the almost permanent ca
formed by their neighbors. However, at long times the in
cator^Dr 2(t)& for a granular assembly in the gravity drive
flow of Natarajan, Hunt, and Taylor@21# increases linearly
with time. This observation suggests a fluidlike behavior i
monodisperse granular flow at high average solid fractio
Surprisingly, they suggested that the average solid fractio
the system was in the range of 0.55,Fs,0.7, though a sys-
tem with the solids’ fractionFs.0.6 can hardly be consid
ered as a fluid. In this light, simulations of dense shear flo
of granular material may be of value to interpret their expe
mental observations and could even suggest a more rea
able value for solids fraction in@21# based on the measure
values ofD* .

Much of the present knowledge about particle diffusiv
in shearing flows of a granular assembly has been der
from simulations. These include the calculation of the se
diffusion coefficient in a bounded system by Savage and
@23# and computer simulations of the anisotropic diffusi
tensor for an unbounded system by Campbell@12#. Using a
kinetic theory analysis, Savage and Dai@23# derived an ex-
pression for the self-diffusion coefficient, which reduces
the classical Chapman-Enskog result@24# in the limit of per-
fectly elastic particles. Apparently, the theoretical se
diffusion coefficients were in excellent agreement with tho
obtained from the simulations at low densities. However,
applicability of the theoretical expression was questioned
higher densities, since the numerical result for self-diffus
exceeded the theoretical value. This discrepancy migh
attributed to an enhancement of the velocity correlations
to the excitation of slowly decaying collective motions in t
flowing granular assembly. Note that Savage and Dai@23#
did not consider particle diffusivity at high solid fractions,
which either ordering or a glass transition might occur. Ho
ever, Campbell@12# reported the absence of particle diffusiv
motion at a solid fraction of 0.56, although he did not discu
whether the granular assembly had undergone crystalliza
or a transition to the glass state had occurred in his sys
In light of the above, a general study of the diffusion pr
cesses in granular materials appears to be lacking.

One of the aims of this paper is to set forth a prelimina
framework for the analysis of shear-induced diffusion in
bounded granular material at high shear rates. To this en
comprehensive model was developed for the diffusive p
cesses involved in a rapid shear flow using the recently
veloped revised Enskog theory@25# to obtain formal expres-
sions for the particle diffusion coefficient, particle therm
diffusion coefficient@26#, and coefficient of mobility.

To obtain an increased understanding of the aforem
tioned mechanisms for the diffusive displacement of the p
ticles in bounded granular materials, it would be quite use
to compare the theoretical predictions with the simulat
results. Another purpose of this study, therefore, is to inv
tigate further the issues such as ordering and jamming in
granular assembly. It has been reported that the par
roughness, which induces fluctuations in rotational moti
has a significant effect on the formation of force chains@1#.
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To address this issue, the simulations were divided into
main groups. In one set of simulations~rough particle simu-
lations! the frictional contact force between the particles go
erns the flow dynamics, and in the other group~smooth par-
ticle simulations! the dynamics of grains is dominated b
inelastic collisions.

Starting from a low solid fraction, namely,Fs'0.16,
where the behavior of the system appears to be less com
the solid fraction was increased carefully up toFs'0.58,
with the goal of examining the conditions for which the flu
would become ordered and the conditions for which ja
ming would occur. For low solid fractions, there are a ve
large number of disordered states in which spheres can
range themselves, which causes the fluid to be thermo
namically stable. By contrast, for a dense system there
much fewer allowable disordered configurations. Therefo
at short times the instabilities could lead to the formation
a nucleation point, which at longer times results in an
dered region surrounded by low density regions. As poin
out by Johnson and Jackson@27#, not all the granular mate
rial is sheared uniformly in such a system. The ordered
gion withstands shear, while in the low density regions,
shearing motion is enhanced, reducing the tendency of j
ming of the system. Note that jamming can be viewed a
spontaneous transition to a metastable disordered config
tion that withstands shear.

Although the picture described above is quite detailed,
actual behavior of sheared granular materials can be e
more complex than has been indicated above. For exam
in the experiments of Miller, O’Hern, and Behringer@4#, the
force fluctuations were measured at the wall for a de
granular flow in a Couette geometry. They observed
strongly non-Gaussian probability distribution in the time s
ries for the normal stress, which exhibits fat tails indicati
of an underlying complex dynamics with long correlatio
times. Interestingly, a shell model of magnetohydrodynam
turbulence produces a time series of energy dissipation
defined in @28#, with the intermittent spikes of dissipatio
quite similar to the intermittent spikes in the data of Mille
O’Hern, and Behringer@4#.

Another example is the observation of the stick-slip m
tion only below a critical shear rate in the shearing of coh
sionless glass spheres in an annular, parallel-plate shea
by Hanes and Inman@29#. In these systems a constan
volume shear flow may not be achieved due to the tende
of dense granular media to expand upon shearing. Analyz
the shearing flow of frictional disks confined between so
walls under a constant load, Thompson and Grest@2# pointed
out that in the presence of gravity the system is unstabl
shear rates less than a critical shear rate, exhibiting a s
slip motion consistent with the experimental observatio
This oscillatory motion could be due to periodic dilatan
transition and gravitational compactification. It is remarkab
that a similar stick-slip dynamics has also been observe
the shearing motion of a thin microscopic fluid film confine
between solid walls where the role of gravity may not
significant @30#. The similarity could indicate analogies be
tween the statistical physics of these systems, suggesting
a more comprehensive understanding of the flow dynam
3-3
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may be obtained by comparing the results of the shea
flow of a granular material in the absence and in the prese
of the gravity. Such information is invaluable in the deve
opment of advanced theories capable of describing flow
high solid fractions, which are of real significance in faci
tating the design of practical granular flow systems.

The organization of the present paper is as follows.
Sec. II, a description is given of the computer simulati
methods and the physical relevance of the simulations. S
tion III presents the simulation results for unbounded gra
lar shear flows. Comparisons are made between the h
sphere model and previous results from kinetic theory.
higher solid fractions, simulations using the particle dynam
model are performed, including comparisons between lin
and nonlinear models of viscoelastic particle behavior.
Sec. IV, simulations of bounded shear flows are performe
investigate the formation of an ordered phase. This beha
highlights the importance of the local solid fraction and w
separation on the stability of the shear flows of a granu
material. In this section the results of the wavelet analysis
also presented, which may interpret the findings in the li
of phenomena observed in physical systems such as the
istence of stick-slip dynamics, characterized by harmo
frequencies. Particle diffusion in low and moderately den
systems is also analyzed using a comprehensive model b
on the revised Enskog theory of granular fluids and
Grad’s method of moments. A part of the formulation is p
sented in the Appendix, along with formal expressions
the particle diffusion coefficient, particle thermal diffusio
coefficient, and coefficient of mobility@31#. The computer
simulations were modified to include the effects of gravity
investigate the bounded sheared systems under constan
ume as well as fixed normal load. Interesting features suc
the dilatancy of granular media and stick-slip dynamics
explored and as a result fresh interpretations are propose
these complex processes. Finally, the concluding remarks
given in Sec. V.

II. MATHEMATICAL MODELS

In the present study, simulations of granular assemb
were carried out by means of the modified hard-sph
model of Alder and Wainwright@11#. Simulations were then
carried out using the particle dynamic model@2,9,10#, and
the corresponding sets of results were compared. The m
development for each approach will be described in the
lowing sections.

A. Modified hard-sphere model

In the modified hard-sphere model@12,13#, the grains are
assumed to interact repulsively@32,33#, and the inelasticity
of the grains is taken into account through the normal co
ficient of restitution,e. The restitution coefficient relates th
precollision and postcollision relative velocities of the tw
points of impact on the particle surfaces:

~V i j8
imp

• k̂!k̂52e~V i j
imp

• k̂!k̂, ~1!

wherek̂ is the unit vector directed from the center of partic
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i to that of particlej at the moment of impact, andVi j8
imp

indicates the postcollisional value of the relative veloci
The normal restitution coefficient decreases from unity as
normal impact velocity,Vn5V i j

imp
• k̂, increases from zero

@34#. Assuming that no plastic deformation occurs, Schwa
and Po¨schel@35# used the generalized Hertz theory of elas
impact for the case of viscoelastic collisions and sugges
an approximate functional form fore(Vn) as 12e;Vn

1/5,
which appears to be in agreement with the experimental d
@34#. Following this idea, the following heuristic functiona
form was chosen for the coefficient of restitution:

e~Vn* !512~12e0!~Vn* !1/5, ~2!

where the dimensionless normal impact velocity is defined
Vn* 5Vn /V0 . Here, the reference coefficient of restitutio
e0 , and the reference velocityV0 are adjustable paramete
of the model.

Considering the particle rotational motion, the relative v
locity of the two points on the particle surfaces that com
together at impact,V i j

imp , is given by Allen and Tildesley
@36#,

V i j
imp5~V i2V j !2

s

2
k̂3~vi1vj !. ~3!

In the above equation,V i , V j , vi , andvj are the transla-
tional velocity and the spin velocity ofi and j particles, re-
spectively. For the description of the tangential forces
tween grains at the contact zone, Lun and Savage@37#
suggested that during a collision the tangential compone
of V i j

imp are changed such that

k̂3~V i j8
imp3 k̂!52b k̂3~V i j

imp3 k̂!, ~4!

whereb is the tangential coefficient of restitution. Then th
conservation laws yield the following expression for the im
pulse:

J5mh1~ k̂•V i j
imp!k̂1mh2k̂3~V i j

imp3 k̂!, ~5!

where h15 1
2 @11e(Vn)#, h25 1

2 (11b)k/(11k), k
54I /(ms2), andm and I are the mass and the moment
inertia of the particle, respectively. The first term on the rig
side of Eq.~5! represents the normal impulse which is in t
direction of k̂, and the second term is the tangential impu
which is in the direction perpendicular tok̂ and lies in the
plane of k̂ and J. It is worth mentioning that the kinetic
energy of the particles is not necessarily conserved in co
sions due to the inelasticity and roughness of the particle

The Coulomb@38# friction law was chosen to model th
friction between two colliding grains with a surface frictio
coefficientm when the normal impact velocityVn is small,
namely,h2uk̂3(V i j

imp3 k̂)u>mh1u( k̂•V i j
imp) k̂u. Then, an ex-

pression for the tangential coefficient of restitution,b, may
be found as follows:
3-4
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b5211m~11e!S 11
1

k
D u~ k̂•V i j

imp!k̂u

uk̂3~V i j
imp3 k̂!u

. ~6!

Note that negative values ofb in the above expression ind
cate a reduction in the component of the postcollisional re
tive velocity perpendicular tok̂, without any change in its
direction @37#.

When the normal impact velocityVn is large, namely,
h2uk̂3(V i j

imp3 k̂)u,mh1u( k̂•V i j
imp) k̂u, then either sticking or

rolling without slipping at impact may occur. During stickin
contacts, both the magnitude and direction of the rela
tangential velocity may change. A phenomenological c
stant, denoted byb0 , has been suggested by Lun and Be
@12# to characterize the restitution of velocity in the tange
tial direction for the sticking contact. The suggested value
this parameter for steel pucks isb050.4 @12#. For rolling
with slipping, b50 @39#. In this case the average norm
force results in a large tangential force which decelerates
precollisional tangential velocity,k̂3(V i j

imp3 k̂), without
slipping.

Applying the calculated values for the coefficients of re
titution, the postcollisional velocities and spins, which a
required to create the trajectories of the particles in the c
can be determined using the following equations:

V i2V i85V j82V j5~h12h2!~ k̂•V i j
imp!k̂1h2V i j

imp ,
~7!

vi82vi5vj82vj52
2k̂

ks
3@h2k̂3~V i j

imp3 k̂!#.

Following Allen and Tildesley@36#, a generalized relation
was developed for the collision time calculation of a pair
particles,i andw, of diameters, which are located at timet
at r i and rw having velocitiesvi and vw , which experience
different accelerationsai and aw . If these particles are to
collide at timet1t iw , namely,

Ur iw1V iwt iw1
1

2
aiwt iw

2 U5s, ~8!

thent iw may be obtained by finding the smallest real posit
root of the following quartic equation:

aiw
2

4
t iw
4 1ciwt iw

3 1~n iw
2 1diw!t iw

2 12biwt iw1r iw
2 2s250.

~9!

Here,aiw andn iw are the values of the relative accelerati
and relative velocity vectors, respectively, between particli
and w. The parameterciw is the dot product of these tw
vectors, namely,ciw5aiw•V iw , and the variabler iw denotes
the distance between the centers of the particles. The pa
eter diw5aiw•r iw represents the dot product of relative a
celeration and position vectors. The dot product of the re
tive velocity and relative position vectors of particlesi,w, is
represented bybiw , i.e.,biw5r iw•V iw . The solutions of Eq.
~9! can be explicitly expressed by
02130
-

e
-
t
-
r

he

-

ll,

f

m-

-

t iw5

¦

F2
ciw

aiw
2 1 1

2 ~k11k2!1/2G
6 1

2 S 2k12k21
k3~k11k2!21/2

4 D 21/2

F2
ciw

aiw
2 2 1

2 ~k11k2!1/2G
6 1

2 S 2k12k22
k3~k11k2!21/2

4 D 21/2

.

~10!

The expressions for the variablesk1 , k2 , andk3 are listed in
Table I.

Neither, one, or both pairs of roots may be real. T
smallest real positive root of the quartic equation~9! corre-
sponds to particle impact. Obviously, the absence of any
positive root implies that the pair of particles will not imm
nently collide. In the case that the particles experience
same acceleration~e.g., gravitational acceleration!, quartic
equation~9! reduces to the quadratic equation given in@36#.

In this approach, in which the system evolves on
collision-by-collision basis @36#, the collision dynamics
model is implemented for the colliding pair and then a sea
is initiated for the next collision. Applying this method
three-dimensional simulations of a large number of partic
can be conducted in reasonably short run times.

B. Particle dynamics models

In the particle dynamics model, two stages occur dur
an impact. During the first stage, which is called quasiela
initial compression, the particles undergo deformation u
their relative velocity vanishes. Recent experiments
Gugan@40# demonstrated that in this period, the kinetic e
ergy of the relative motion of the particles may be stor
throughout the strain field. Therefore, the elastic poten
energy function used by Hertz@41# may be valid for the
initial compression, suggesting that a normal repulsive c
tact force on particlei due to particlej is produced, whose
magnitude is given by

uFn,i j u5Knd i j
3/2. ~11!

In the above equation,Kn is a constant defined ass1/2/(3x)
for a sphere on sphere and&s1/2/(3x) for a sphere on
plane, x5(12n2)/E, n is the Poisson’s ratio, andE is

TABLE I. Definition of variables needed for the solution of th
quartic equation.

Variable Definition

k1 4@(ciw /aiw)22
2
3 (n iw

2 1diw)#/aiw
2

k2 25/3@(22/3k4)/(k51k6)1/31(k51k6)1/3#/(3aiw
2 )

k3 16@ciw(n iw
2 1diw)/aiw

2 24(biw1ciw
3 /aiw

4 )#/aiw
2

k4 (n iw
2 1diw)226ciwbiw13aiw

2 (r iw
2 2s2)

k5 2(n iw
2 1diw)3218biwciw(n iw

2 1diw)127aiw
2 biw

2 19(r iw
2

2s2)@3ciw
2 22aiw

2 (n iw
2 1diw)#

k6 A24k4
31k5

2
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FIG. 2. ~a! Side view of a cubic box containing about 10 000 identical nonoverlapping spherical particles, half light and half dark.
show the direction of motion of the wall particles.~b! Dimensionless translational granular temperatureT* as a function of solid fraction.
Smooth particles are represented by triangles and squares fore050.84 and 0.93, respectively. Squares with plus representT* for e
50.93, where the coefficient of restitution is assumed to be constant. The upper and lower solid lines represent kinetic theory fie0

50.93 and 0.84. For rough particles, inverted triangles are fore050.84,m50.41, andb050 and diamonds are fore050.93,m50.123, and
b050.4. The dashed lines are visual fits through the data. Inset: Distribution of dimensionless velocity as a function of dimen
distance inz direction.~c! Dimensionless translational granular temperature for smooth particles as a function of dimensionless dis
z direction. Left and right triangles areTx* and Tz* at Fs'0.2 ande050.93, circles and diamonds areTx* and Tz* at Fs'0.45 ande0

50.93, triangles areTz* at Fs'0.2 ande050.84.~d! Graphs of the normalized probability density distributionspn for nx* , ny* , nz* , in the
form of ln@2ln(pv)# versus ln(uV* u), wherepn5p(V* )/p(0), atFs'0.4 ande050.93. Triangles are fornx* , squares forny* , and inverted
triangles fornz* . The solid line indicates the fitted value for the angular coefficient, which is about 2.~e! Dimensionless translationa
granular temperature for rough particles as a function of dimensionless distance inz direction. Right and left triangles areTx* and Tz* at
Fs'0.2 ande050.93,m50.123, andb050.4, respectively; circles and diamonds areTx* andTz* at Fs'0.4 ande050.93,m50.123, and
b050.4, respectively; triangles areTz* at Fs'0.4 ande050.84, m50.41, andb050. ~f! Graphs of the normalized probability densi
distributionspv for spins in the form of ln@2ln(pv)# versus ln(uvu), wherepv5p(v)/p(0), at Fs'0.4 ande050.93, m50.123 andb0

50.4. The triangles are forvx , squares are forvy , and inverted triangles are forvz . The solid line indicates the fitted value for the angu
coefficient, which is about 2. The data ofvy , which has the mean value of 1.01 s21, was manipulated to obtain data with zero mean.
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Young’s modulus;d i j is the amount of overlap defined a
s2ur i j u andr i j is the vector connecting the center of mass
particle i to the center of mass of particlej.

A considerable part of the initial kinetic energy does n
contribute to the kinetic energy of recoil and is transform
into losses such as the thermal energy and energy of so
oscillation. This transformation seems to occur during
second stage of impact, namely, after the time of maxim
compression of the particles. During this period, the shap
the particles undergoes restitution due to the action of
elastic forces, and the potential energy of deformation
again transformed into the kinetic energy. At the end of
second period, the particles are no longer in contact,
their recoil velocities are reduced after impact.

Gugan suggested that Hertz’s equations give reason
results for inelastic collisions even when the energy los
02130
f
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e
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large @40#. However, Haff@10# argued that for many appli
cations the aforementioned contact scenario is not real
and plastic flow, spallation, cracking, or fracture may occ
By considering the fact that the constituent particles are h
and the amount of deformation near the contact zone is s
compared to particle size, Haff suggested a simplified mo
@10#, which might capture the most important contact pro
erties. In this model for a binary collision betweeni and j
particles, the normal contact force is given by@2,10#

Fn,i j 5S knd i j 1
1

2
mgnḋi j • k̂D k̂. ~12!

In the above equation,k̂ is the unit vector directed from the
center of particlei to that of particlej at impact,ḋi j repre-
3-6
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FINE STRUCTURES IN SHEARED GRANULAR FLOWS PHYSICAL REVIEW E66, 021303 ~2002!
sents the rate of change ofr i j , kn5(23105)mg/s is the
stiffness of a spring that prevents the particles from interp
etrating @2#, and gn is a constant which accounts for th
energy lost at contact due to inelastic processes. Thomp
and Grest@2# suggested that the coefficient of restitutione
may be defined as exp(21

2gntcol). Here tcol represents the
contact time, which is a constant defined asp(2kn /m
2gn

2/4)21/2 @2#. However, the measurements@34,40,42# sug-
gested thattcol appears to have a characteristic depende
on the impact velocity, namely,tcol;uV i j

impu21/5.
During the collision of two slipping particles each partic

may be subjected to a tangential frictional force that oppo
its rotational motion. The tangential force that characteri
the frictional effects may be given by the Coulomb equat

Ft,i j 52muFn,i j uk̂3S V i j
imp

Vi j
3 k̂D . ~13!

For nonslipping contact, Thompson and Grest@2# suggested
that the tangential force may be estimated using a diffe
expression,

Ft,i j 52 1
2 gsmk̂3~V i j

imp3 k̂!, ~14!

wheregs represents a tangential viscous damping const
The tangential coefficient of restitution,b, discussed earlie
is defined as exp(2gstcol) @2#.

III. PARTICLE DIFFUSIVITY IN UNBOUNDED
SHEAR FLOWS

To simulate an unbounded system of spherical partic
subjected to a uniform shear, which is characterized b
velocity gradient of the formV(z)5 «̇zex , the Lees-
Edwards-type@43# periodic boundary conditions were ap
plied to the bounding top and bottom faces of the cu
computational box. Simple periodic boundary conditio
@36# were applied on other faces of the computational b
Figure 2~a! illustrates the initial configurations for the simu
c
lc

ns
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lations. About 10 000 identical nonoverlapping spherical p
ticles, consisting of two species differing only by a col
label, were placed randomly in the computational box. T
initial velocity of each particle in thex direction was as-
signed with a magnitude according to a linear velocity pro
V(z) plus a small random number within the interv
@20.05uV(Lz)u,10.05uV(Lz)u#. The initial velocities in the
y and z directions as well as the spins were all set to ze
Here Lz is the height of the box, andex represents the uni
vector in thex direction, which is the direction of mean flow
For the geometry shown in Fig. 2~a!, Lz is set to unity.

Simple shear flows

To simulate an unbounded shear flow of a highly idealiz
system whose dynamics is dominated by collisions, the ha
sphere model discussed in the preceding section is used
which the particle surface frictionm is set to zero. In this
case, the particle surface is characterized only by a co
cient of restitution ofe. In the simulations, the solid fraction
varied from 0.16 to 0.58. In order to obtain the local descr
tion of quantities such as solids fraction, granular tempe
ture, and velocity, first the box is divided into an appropria
number of layers in thez direction, using the criteria sug
gested by Loose and Ciccotti@44#. Then, the local values ar
calculated as averages over the particles in the particular
ers. Finally, the local values are averaged for 200 configu
tions each separated byt* '1022. Here, the dimensionles
time t* is defined ast «̇.

Figure 2~b! illustrates that as the solid fraction in the com
putational box increases, the dimensionless translatio
granular temperatureT* 5T/( «̇s)2 decreases. Figure 2~b!
also compares the simulation results for two different valu
of e0 , namely, 0.93 and 0.84. As expected, the results sh
that as thermal dissipation increases, the average fluctua
energy of the particles decreases. The results from the h
sphere model can be compared to those predicted by
kinetic theory analysis for smooth spherical particles, as
picted by a solid line in Fig. 2~b!. Note that an expression fo
T* may be derived from the kinetic theory of unbound
rapid granular flows@25# by assuming an isotropic distribu
tion of collision angles between the colliding particles:
T* 5
1

24Fs~e0
221!gc

H @11 4
5 Fsgc~11e0!#@ 5

2 1Fsgc~3e0
212e021!#p

6Fsgc~11e0!~e023!
2

8

5
~11e0!FsgcJ , ~15!
as
ve-

s in
ra-
the
ef-

act
wheregc5@12(Fs /Fm)4Fm/3#21 is the contact value of the
equilibrium radial distribution function@45# and Fm is the
maximum shearable solid fraction for the particles@46#. As
can be seen from Fig. 2~b!, at higher solid fractions, the
dimensionless translational granular temperatures produ
by numerical simulations exceed the values of those ca
lated from the kinetic theory expression~15!.

To verify the accuracy of the algorithm, two extra ru
ed
u-

were performed, in which the coefficient of restitution w
assumed to be independent of the magnitude of impact
locity and was set to a constant value ofe50.93. The results
from these runs are marked by the squares with plus sign
Fig. 2~b!. As can be seen, the translational granular tempe
tures were slightly lower in these cases, compared to
temperatures calculated for similar cases in which the co
ficient of restitution depends on the magnitude of imp
3-7
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POLASHENSKI, ZAMANKHAN, MÄKIHARJU, AND ZAMANKHAN PHYSICAL REVIEW E 66, 021303 ~2002!
velocity, namely,e512(120.93)Vn*
1/5, where settingVn*

5Vn /V0 to 2Vn gives a reasonable fit to the available da
This observation implies that the algorithm is correctly c
culating the coefficient of restitution, which is higher tha
0.93 for cases in which the impact velocity is lower than t
reference velocity in Eq.~2!.

Since the number of collisions for whichVn is lower than
V0 increases with the increasing solid fraction, the simu
tion results for dimensionless granular temperature would
expected to be higher than the calculated values using
kinetic theory expression~15!.

Simulations were then performed using a system of
elastic rough spheres subjected to steady shear. The in
configuration is that shown in Fig. 2~a!, and the solid fraction
again varied from 0.16 to 0.58. Two different sets of valu
for the surface parameterse and m were used. The first se
was that suggested by Lun and Bent@12# for steel pucks,
namely,e050.93 andm50.123. In this case of sticking bi
nary collisions,b0 is set to 0.4. The second set was th
suggested by Drake@47# for glass beads, namely,e050.84
and m50.41, with b0 taken to be zero. A comparison be
tween the results of inelastic, rough particles and those
smooth particles, as shown in Fig. 2~b!, indicates that at the
same solid fraction, shear rate, and restitution coefficient,
frictional grains are cooler than the frictionless grains.

Figure 2~c! plots the variations of local dimensionles
translational granular temperature in longitudinal and late
directions in the direction of the velocity gradient~namely,
thez direction!. The nearly flat profiles in Fig. 2~c! are char-
acteristic of unbounded simple shear flows with small am
tude local fluctuations. Moreover, the distributions of dime
sionless fluctuation velocities,nx* , ny* , nz* , are Gaussian
with standard deviations,Tx*

1/2, Ty*
1/2, Tz*

1/2, respectively,
about the mean value zero as shown in Fig. 2~d!. Here, the
dimensionless fluctuation velocity is defined asv* 5v/s«̇. A
comparison between results of the numerical simulations
T* in the longitudinal direction, namely,Tx* , and those as-
sociated with the lateral directions, namely,Ty* and Tz* , as
depicted in Fig. 2~c!, suggests that the translational granu
temperature is not isotropic in simple shear flows of a gra
lar assembly. As shown in Fig. 2~e!, the translational granula
temperature profiles are also flat, implying that similar b
havior exists for unbounded simple shear flows of rough
smooth grains. Moreover, there is no effect of particle rou
ness on the form of velocity profile. It can be seen from Fi
2~c! and 2~e! that the ratio of the dimensionless translation
temperature of smooth steel balls and rough steel pu
Tzsmooth* /Tzrough* could be as large as 3 at a solid fraction
Fs'0.4. Therefore, the difference in translational tempe
tures suggests that shearing of the rough particles ind
rotational motion. It should be noted that for both of t
aforementioned systems the initial values of all spins w
set to zero. The evidence for generation of rotational mot
in the shearing motion of an assembly of rough particles
illustrated in Fig. 2~f!, which presents the probability densi
distribution of particle spins for a configuration of particl
with the surface parameters ofe050.93, m50.123, andb0
50.4 at the shear rate of 2 s21, taken after 23108 collisions.
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Note that in this case the shearing motion in thex direction
induces a mean rotational motion in they direction ofv̄y'
21.01ey s21. Here, ey represents the unit vector in they
direction.

Assuming that the particles are uniform solid spher
the rotational temperature is defined asQ
5(ks2/12N)( i 51

N @(v ix2v̄x)
21(v iy2v̄y)

2 1(v iz2v̄z)
2#,

wherev̄x51/N( iv ix , v̄y51/N( iv iy andv̄z51/N( iv iz are
the average values of the spins in thex, y, andz direction,
respectively. HereN represents the total number of particl
in the computational box. The dimensionless rotational te
perature in the direction of the velocity gradient may be d
fined asQz* 5k( i(v iz2v̄z)

2/(4N«̇2). As seen in Fig. 2~f!, a
normal distribution with zero mean and variance of 3.7
which is shown by a solid line, provides good approxim
tions for spins in thez direction. Usingk5 2

5 for a uniform
solid sphere,Qz* for the aforementioned case was found
be close to 0.1. In this case, the difference in total~rotational
plus translational! fluctuation energy of the systems of roug
and smooth particles could be due to the fact that in
system of rough particles, the dissipation into thermal ene
occurs by means of both friction and inelastic collisions.

To investigate the signature of order in the sheared gra
lar system, the variation ofQ6ANb ~instead ofQ6! as a func-
tion of solid fraction for both smooth and rough particles
given in Fig. 3. As mentioned earlier,Q6ANb'1 for a spa-
tially uncorrelated system. Using this normalized value
effect of having different number of bonds for different sam
plings can be removed. AsQ6ANb approaches 2.5, there i
still significant disorder in the system. Note that the value
Q6ANb for a system with cuboctahedral symmetry could
even higher than 100. Hence, the structural changes tha
cur during the process of increasing the solid fraction
small and the system remains disordered even at high s
fractions. This indicates that as the solid fraction is furth
increased the grains may become frozen and a noncrysta
solid ~namely, a glass! may form. An increased understand
ing of the glass transition could provide insight into the d
namics of spatiotemporal fluctuations in a dense slow
evolving granular system. Unfortunately, computer simu
tion results such as those presented here may provide
limited insight, since hard-sphere models may not be
equate to capture cooperative motion, such as the rearra

FIG. 3. Variation ofQ6ANb with solid fraction for both smooth
and rough particles. Note thatQ6ANb for a finite spatially uncorre-
lated system is'1.
3-8
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FIG. 4. ~a! Left: Variations of
a normalized solids fraction o
light particles as a function of di-
mensionless distance in thez di-
rection at different dimensionles
times t* . Squares are att* 50,
left triangles are att* 530, circles
are at t* 539. The total solids
fraction is Fs'0.2 ande050.93.
The solid lines represent analyt
cal solutions~18! for which Tz* is
given in Fig. 2~c! ~right triangles!
ands* '0.034.~a! Right: Mixing
of light and dark particles in the
computational box att* 539. ~b!
Left: Variations of a dimension-
less solids fraction of light par-
ticles as a function of dimension
less distance in thez direction at
different dimensionless timest* .
Squares are att* 50; left triangles
are at t* 530; circles are att*
539. The total solids fraction is
Fs50.45 ande050.93. Thesolid
lines represent analytical solution
~18! for which Tz* is given in Fig.
2~c! ~diamonds! and s*50.043.
~b! Right: Mixing of light and
dark particles in the computationa
box at t* 539.
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ment of clusters of grains, which seems to dominate str
tural relaxation at high solid fractions.

In sheared granular fluids where the interactions betw
the grains lead to correlations between the positions and
locities of different grains, the self-diffusion may be inte
preted as a result of cooperative effects of macroscopic s
fraction fluctuations. Thus an analysis of particle diffusi
motion may contribute to the understanding of issues suc
cooperative motion in a granular fluid. To this end, she
induced dispersions of grains in thez direction at solid frac-
tions of Fs'0.2 and 0.4 are illustrated in Fig. 4. The sid
view of grains in the system before application of strain
the x direction is shown in Fig. 2~a!. As shown in Fig. 4, as
time evolves, light grains migrate away from the upper
gion, causing their solid fraction to decay from its initi
profile, with a higher rate of mixing for lower values of tot
solid fraction.

To investigate the mixing behavior as shown in Fig. 4
diffusion law may be obtained by assuming that the rando
walk-type displacements of grains in thez direction are not
coupled to these in any other directions. Thus, a dimens
less mass balance for the light particles may be given by@25#

]F l*

]t*
2Dz* s* 2

]2F l*

]z* 2 50. ~16!

In the above equation,z* 5z/Lz , F l* 5F l /Fs , Dz*
5Dz /s2«̇5p1/2Tz*

1/2/@8(11e0)Fsgc#, s* 5s/Lz , andFs

represents the total solid fractions of light and dark partic
02130
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n
e-

lid
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-

-
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Here, the expression for the diffusion coefficient in thez
direction is given byDz5sp1/2Tz

1/2/@8(11e0)Fsgc#, which
may be derived from the kinetic theory of unbounded ra
granular flows@25#. The system shown in Fig. 2~a! is subject
to the three conditions

t* 50, H z* .0, F l* 51

z* ,0, F l* 50,

t* .0, z* 5 1
2 , F l* 5 1

2 , ~17!

t* .0, z* 5 1
4 ,

]F l*

]z*
50.

The solution to this problem is given by@48#

F l~ t* ,z* !5
1

2
1 (

n51

`

e2p5/2n2s* 2Tz*
1/2t* /2~11e0!Fsgc

3Fsin~np!

np
cos~2npz* !

1
12cos~np!

np
sin~2npz* !G . ~18!

A comparison between the analytically obtained so
fraction distributions~18! and those obtained from numeric
simulations, which are shown by symbols in Fig. 4, sugge
that in the range of solid fractions given above, the gr
3-9
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FIG. 5. ~a! Left: Initial con-
figuration of tracer grains in the
computational box.~a! Right: Dis-
persion of the grains. Squares a
initial positions and circles are po
sitions of grains after a short pe
riod of time in a dimensionlessyz
plane. ~b! Variations of ^Dz* 2&
with the dimensionless delay tim
t* at Fs50.565 for the smooth
particles in an unbounded shea
flow. Triangles and circles aree0

50.84 ande050.93, respectively.
The solid lines represent linea
fits, with slopes of 2Dz* . ~c! Dz*
as a function of solid fraction.
Squares aree050.84, triangles are
e050.93. The upper and lowe
solid lines are the kinetic theory
results, namely,Dz* 5p1/2Tz*

1/2/
@8(11e0)Fsgc#, with the values
of Tz* given in Fig. 2~c!, for e0

50.93, 0.84.
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displacements in thez direction are of random walk type
characterized by a self-diffusion coefficientDz .

To make the preceding remarks more specific, supp
thatN0 is the number of tracer grains initially situated abo
Z50 in the computational box, as shown in Fig. 5~a!. To
obtain a better visualization, the normal grains have not b
shown in this figure. Due to shearing motion at timet.0, the
tracers are spatially dispersed aboutZ50. The evidence of
dispersion is illustrated in Fig. 5~a!, which shows the posi-
tions of tracer grains in ayz plane taken at two differen
times. At any timet.0 the second moment of the number
tracers per unit volume,N(z,t), represents the mean-squa
displacement of the traces in thez direction. That is,̂ @z(t)
2z(0)#2&5(1/N0)*z2N(z,t)dz. If the tracers are spatially
distributed in a Gaussian such asN(z,t)5N0 /
(2ApDt)exp@2z2/(4Dt)#, then the self-diffusion coefficien
is given by@19#

D5
^@Z~ t !2Z~0!#2&

2t
5

^DZ2&
2t

. ~19!

Equation~19! applies when the timet is large compared to
the average time between collisions of grains. Here the
gular brackets denote the ensemble average and the sam
are taken at time intervalst apart.

Figure 5~b! illustrates the variations of the dimensionle
mean-square displacement in thez direction with the dimen-
sionless delay timet* 5t«̇ at Fs50.56 for smooth particles
with surface parameterse050.84 andm50. The displace-
02130
se
t

n

n-
ples

ments were evaluated excluding periodic boundary con
tions. At long times where the deviation from the free diff
sion regime becomes apparent,^DZ2& behaves linearly int.
This observation may suggest that the linear Fick’s law
scribes, on average, the dissipation of spontaneous m
scopic density fluctuations. In this case the dimensionl
diffusion coefficient in the direction of the velocity gradie
is found to beDz* 50.05, which is close to that measured b
Bridgwater @18# in the simple shear apparatus, name
0.057. Note that the solids fraction was not reported in@18#.
As also seen in Fig. 5~b!, at a solid fraction of 0.56, using th
valuese050.93 andm50 for the surface parameters in th
simulation results inDz* 50.059. The dimensionless transl
tional temperature in the direction of the velocity gradie
Tz* , for this case is found to be 1.62. Considering the dim
sionless diffusion coefficientsDz* given in Fig. 5~b!, along
with a comparison between the corresponding translatio
temperaturesTz* , it appears that the diffusive motion of pa
ticles is mainly controlled by the translational temperatu
whose value is a function of the coefficient of restitution,e.
The results also indicate thate can be adjusted to obtain th
value of the dimensionless transverse diffusion coeffici
measured by Bridgwater@18#, which was 0.057. Perhaps
reasonable value for the coefficient of restitution describ
the surface properties of phenolic resin balls would be in
range 0.84<e<0.93, but closer to the higher end of th
range.

Figure 5~c! compares the theoretical results obtained
ing Dz* 5p1/2Tz*

1/2/@8(11e0)Fsgc# with those predicted by
3-10
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FINE STRUCTURES IN SHEARED GRANULAR FLOWS PHYSICAL REVIEW E66, 021303 ~2002!
the simulations at two different coefficients of restitution.
can be seen that the aforementioned expression forDz* rea-
sonably fits the numerical results for systems with a so
fraction lower than 0.45. However, the simulation results
ceed the theoretical value at higher solid fractions. In
present simulations, Eq.~2! was used to describe the inelas
behavior of the grains. Therefore, it is not clear whether
deviations may be attributed to an enhancement of the ve
ity correlations due to the excitation of slowly decaying c
operative motions in a dense granular fluid, or to the use
different expressions for the coefficient of restitution in t
simulations and the kinetic theory expression.

The presence of long-duration frictional contact betwe
particles was reported by Natarajan, Hunt, and Taylor@21#. It
may be speculated that in their gravity driven flow, the gra
tational effects contribute insignificantly to the particle d
fusive motion in the direction of the velocity gradient, whic
is perpendicular to the direction of gravity. The obtain
value of the dimensionless diffusion coefficientDz* , for the
present simulations of a system of frictionless grains,
somewhat larger than the values of the dimensionless la
diffusion coefficient measured in the moderately low sh
region in the experiments@21#, which was 0.0397. Recal
that at the extremely high average solid fraction ofFs
.0.6, a difference of four orders of magnitude exists b
tween the values of dimensionless diffusivity in the directi
perpendicular to the main flow, measured by Menon a
Durian @8#, and that calculated from the results of Nataraj
Hunt, and Taylor@21#. Assuming that the solid fraction in th
latter case was much lower than that in the former case
may be concluded that the value ofDz* falls below its theo-
retical value at solid fractions close to the glass transitio

Figure 6~a! plots the variations of the dimensionle
mean-square displacement of rough particles in thez direc-
tion, ^Dz* 2&5^Dz2&/s2, with a dimensionless delay tim
t* , a shear rate«̇54 s21, a solid fraction ofFs50.565, and
surface parameters of the second set mentioned ab
namely, for glass particles. After 107 collisions, it was found
that the value of the dimensionless diffusion coefficient
not depend on the choice of time origin, which indicates t
the system had attained a steady state. As shown in Fig.~a!,
at long times^Dz* 2& behaves linearly int* , which may

FIG. 6. ~a! Variation of ^Dz* 2& as a function of dimensionles
delay timet* at Fs50.565 and the surface parameterse050.84,
m50.41, andb050. The solid line represents a linear fit.Tz* and
Dz* are 0.348, 0.038.~b! Dz* as a function of solid fraction. The
squares aree050.84,m50.41, andb050; triangles aree050.93,
m50.123, andb050.4.
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justify the use of the Einstein formula for calculating th
macroscopic dimensionless diffusion coefficient in the dir
tion of velocity gradient. From Fig. 6~a! it is found thatDz*
50.0394. This value does not vary with the shear rate. In
present cases, the average dimensionless translational
peratureTz* is found to be 0.352. Therefore, it can be co
cluded that for these cases, the translational temperatur
the direction of the velocity gradient,Tz , was quadratically
dependent on the shear rate. The obtained value of the
mensionless diffusion coefficientDz* for the present simula-
tions is very close to the average of the values measure
the moderately low shear region in the experiments@21#,
which was 0.0397. This agreement, which supports the
lier conjecture that the particle diffusive motion in their sy
tem is governed by shearing motion and that the effect
gravity could be of minor relevance, is quite impressiv
Moreover, this finding may also suggest the value of so
fractions in the experiments@21#.

It is worth mentioning that at the same solid fraction a
shear rate, particles with smooth surfaces tended to s
more diffusive motion in the direction of the velocity grad
ent than particles with rough surfaces. Comparing the res
in Figs. 5~c! and 6~b!, the dimensionless diffusion coefficien
Dz* of the smooth particles is greater by a factor of about
than that of the rough particles. An explanation for the d
ference in the dimensionless diffusion coefficient is su
gested by the observation that the dimensionless translati
temperature in the direction of the velocity gradient of t
rough particles is lower than that of the smooth particles

In the absence of any theoretical treatment for predict
the diffusive motion of rough grains in a sheared flow, t
dimensionless lateral diffusive coefficient is extracted fro
the data using the Einstein formula~21!. The results are il-
lustrated in Fig. 6~b!, which plotsDz* as a function of the
solid fraction. The dimensionless lateral diffusion coefficie
for rough grains is smaller than that for smooth grains a
given value of the solid fraction. However, the present res
do not seem to indicate at what solid fraction the transition
the glass state occurs.

Haff @10# suggested that hard-sphere models suffer fr
several limitations including the lack of a realistic model f
the contact forces between grains. Thus, the use of h
sphere models may not be justified when the solid fractio
very high and the particle free times are shorter than
duration of the contacts. A related question can then be po
regarding the extent to which a true model for the cont
forces between the grains affects the simulation results fo
assembly of uniform grains subjected to a shearing defor
tion. In the present simulations it is important to note that
probability of finding free times shorter than 1024 s is quite
rare even at a solid fraction of 0.58 for smooth particles,
illustrated in Fig. 7~a!. According to the classical theory o
impact between frictionless elastic bodies@41#, the total du-
ration of collision,Tc , of two identical spherical particles
with massm, diameters, and elastic coefficientx, is given
by Tc54.347@mx/s1/2#2/5Vn

21/5. ThusTc could be as small
as 831025 s for phenolic resin particles with diameters
18.6 mm used in@18# having the normal impact velocity o
3-11
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FIG. 7. ~a! Probability of par-
ticle free time for two different
solid fractions fore050.93. The
squares areFs'0.2, triangles are
Fs'0.56. The straight line indi-
cates the power lawt23. ~b! Di-
mensionless mean free time as
function of solid fraction. The
squares aree050.84, triangles are
e050.93. ~c! Probability of par-
ticle free time for two different
solid fractions for the surface pa
rameterse050.84, m50.41, and
b050. The squares areFs'0.2,
triangles are Fs'0.57. The
straight line indicates the powe
law t22.6. ~d! Dimensionless
mean free time as a function o
solid fraction for e050.84, m
50.41, andb050. The solid lines
in ~b! and ~d! are visual fits
through the data.
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20 cm/s. At the same impact velocity, the value ofTc for
1-mm glass particles is one order of magnitude lower th
that for phenolic resin particles. These estimated values
Tc suggest that the hard-sphere model could be of us
illuminate the basic features of the shear flow of granu
material even at high solid fractions. The corroborating e
dence is the agreement between the numerical results an
measured values for the dimensionless self-diffusion coe
cient discussed above.

It is interesting that at the solid fraction of 0.58, the s
tistics of a timet during which a particle flies freely betwee
two successive collisions displays a power law distributi
P(t);t2a, with exponenta'3. There is a short-time cut
off where the uniform distribution is observed ast ap-
proaches very low values. However, as depicted in Fig. 7~a!,
which compares the statistics oft at two different solid frac-
tions, a nearly uniform distribution is observed for the who
range of particle free times at a low solid fraction of 0.2.

Figure 7~b! shows the variations of dimensionless me
free time as a function of solid fraction for smooth particle
At a specified solid fraction, the granular fluid with lowe
dissipation rate~and thus a higher granular temperature! is
observed to have a lower mean free time. Also, the mean
time decreases sharply close to a solid fraction of 0.6, wh
the glass transition may occur. The condition is even m
pronounced in the case of rough particles at very high s
fractions, namely, close to the glass transition solid fract
Fg . From Fig. 7~c! it may be concluded that a fairly hig
probability exists of finding free times shorter than 1024 s at
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solid fractions higher than 0.58. The results show that
statistics of free timet displays a power law distribution
P(t);t2a, with exponenta'2.6, and there is a very sma
sign of short-time cutoff where the uniform distributio
could be observed ast approaches very low values. A
shown in Fig. 7~c!, which compares the statistics of free tim
t at two different solid fractions, a nearly uniform distribu
tion is again observed for the whole range of particle fr
times at the low solid fraction of 0.2. Figure 7~d! shows the
variations of dimensionless mean free time as a function
solid fraction. At very high solid fractions the mean free tim
rapidly drops to extremely small values. The results p
sented in Fig. 7 suggest that particle dynamics models sh
be used to obtain more reliable results at very high so
fractions.

At this stage, it is worthwhile to investigate to what exte
the Kelvin-type model of Haff@10# for linear viscoelastic
grains at contact mimics the real granular flows. It was s
gested that a linear visoelastic behavior is often found
small deformations, and that a model based on this beha
predicts a constant collision time. Recently, Gugan@40# mea-
sured the duration of contact,Tc , as a function of normal
velocity at impact,Vn , for frictionless balls striking a flat
surface. Although the collisions were dissipative, the res
for Tc(Vn) are found to be consistent with Hertz’s elas
theory of impact. In this light, a model is developed in whi
the contact of frictionless grains produces a normal repuls
contact force whose magnitude is proportional to the3

2 power
of the amount of overlap. In this model for a collision b
3-12
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FINE STRUCTURES IN SHEARED GRANULAR FLOWS PHYSICAL REVIEW E66, 021303 ~2002!
tween a ball and a flat surface, the normal contact fo
during a collision is given byFn5(Knd3/21Gnḋ• k̂) k̂, where
Gn represents the dynamic damping, which is a measur
the energy loss at contact due to inelastic processes. HerGn
is a function of the impact velocity, which is calculated usi
the e-Vn relationship given in@40#.

As given in Table II, using the nonlinear model the sim
lation results forTc are found to be in good agreement wi
measured values@40#. The predicted collision times are no
constant, but are a function of velocity at impact. Moreov
the coefficient of restitution decreases from unity as the n
mal impact velocity increases from zero, in qualitative agr
ment with the results given in@34,42,49#. For most solid
substances, the coefficient of restitution,e, is a function of
impact velocityVn . Thus the primary issue regarding th
models for the contact forces between grains is how clos
the model can predict thee-Vn relationship. Limited infor-
mation is available for thee-Vn relationship for solid sub-
stances@34,42,49#.

The present results highlight the limitation of the partic
dynamics model for linear viscoelastic grains@2,9,10#, which
predicts a constant collision time, which results in a const
coefficient of restitution. More limitations of the aforeme
tioned model are evident considering the results presente
Fig. 8. Figure 8~a! shows the variations of thex, y, and z
components of the normal contact force as a function of t
in a binary collision of two glass beads with diameter 4
mm. The impact velocity is selected to be 0.56 m/s and
coefficient of restitution is set to be 0.84. The solid lin
indicate the results for linear, viscoelastic, frictionless gra
obtained using Eq.~12!, whereas those calculated usin

TABLE II. A comparison between results for contact time fro
measurements and simulations.

Vn

~m/s!
Values measured@40#

Tc ~ms!
Simulation results

Tc ~ms!

2.19 0.97 0.97
2.78 0.90 0.93
3.67 0.83 0.88
4.24 0.81 0.85
4.99 0.79 0.83
5.50 0.79 0.81
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Fn,i j 5(Knd i j
3/21Gnḋi j • k̂) k̂ with Gn(Vn)51.36(Vn /V0)1/5

10.063(Vn /V0)2/5 kg/s are shown by a dashed line. HereV0

represents a reference velocity. A comparison between
results of linear and nonlinear models reveals that the p
dicted maximum contact force using the nonlinear mode
one order of magnitude higher than that found using
linear model. Also a much shorter duration of collision
observed for the nonlinear model. At the same impact vel
ity, increasing the diameter of glass beads to 48 mm
creases the difference between the maximum contact fo
predicted by the models as shown in Fig. 8~b!. Moreover, the
numerical values for the collision times become closer
each other. Therefore, the differences between the mod
predictions are more pronounced when the size of gra
becomes smaller. For 48-mm particles a differentGn-Vn re-
lation is used, which is Gn(Vn)5252.4(Vn /V0)1/5

1291.4(Vn /V0)2/5 kg/s.
To show that even simple shear flows of frictionle

grains can produce complex structures even in simple si
tions, simulations were performed for unbounded flow us
about 10 000 glass beads. The diameter of beads is
54.8 mm with the material density ofr52500 kg/m3. For
the geometry shown in Fig. 2~a!, the width, length, and
height of the computational box were each selected to be
cm. The beads were subjected to a uniform shear, whic
characterized by a shear rate of«̇520 s21. The solid fraction
is close to 0.58. For the linear model,kn and gn are set to
63104 kg/s2 and 3162 s21, respectively. These paramete
give a constant collision time of 1.131024 s ~for a binary
collision! and a constant coefficient of restitution of 0.8
The second model is the nonlinear viscoelastic model
which a generalized form of the aforementioned nonlin
model is used, by which multiple contacts can be predict
In this model the damping coefficient is given byGn(Vn)
51.36(Vn /V0)1/510.063(Vn /V0)2/5 kg/s. The other mode
parameter that controls the stiffness of the material, nam
Kn , is set to 2.243109 Pa m1/2. The equations of motion are
integrated using fourth- and fifth-order embedded formu
from Dormand and Prince@50# with Dt'tcol/100.

Both models predict the formation of flattend cluste
However, the nonlinear model predicts a shorter cluster l
time as compared to the linear model. However, the ma
mum intraparticle forces are much larger in the nonline
model. Recall that in the experiments of Miller, O’Hern, an
a

f

FIG. 8. ~a! Variations of forces
in the x, y, and z directions as a
function of time for 4.8-mm glass
beads using linear~solid line! and
nonlinear ~dashed line! models.
Here,X, Y, andZ denotex, y, and
z directions. Inset: Schematic of
binary collision of smooth par-
ticles for the linear model.~b!
Comparison similar to that in~a!
for glass beads with a diameter o
48 mm.
3-13
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Behringer@4#, in which 4-mm particles were used, the large
peaks in the normal stress signal were about ten times
average value of the normal stress. This observation app
to be more consistent with the intraparticle forces predic
by the nonlinear model.

In many systems of practical interest the presence o
long-duration frictional contact between grains has been
served@21#. Thus, the importance of surface friction in flo
dynamics of sheared granular flows should also be stud
In order to model in a simple way the change of geometr
contacts during collisions of rough grains, the linear mo
of Thompson and Grest@2# was used. As suggested in@2# the
parametersgn andgs , which ensure that collisions betwee
grains are inelastic, are set asgn52gs , which means that
the normal and tangential coefficients of restitution hav
value of 0.84. The static Coulomb friction coefficientm is set
to 0.4. In this series of simulations the diameter of bead
s54.76 mm with the density ofr52500 kg/m3. Again the
width, length, and height of the computational box were e
selected to be 10 cm and the number of grains in the si
lations was 10 187. The grains were subjected to a unifo
shear with a shear rate of«̇520 s21. The solid fraction is
close to 0.586. Contrary to the flattened clusters us
smooth particles, here the structures were found to be m
like elongated chains as shown in the inset of Fig. 9.

The nature of the interactions in a dense frictional gra
lar assembly under a shearing motion can be examined
analyzing the formation and disintegration of the chainl
cluster presented in the inset of Fig. 9. Using a linear mo
it was found that the effective lifetime of the chain is of ord
of 1024 s. This result implies that the use of the hard-sph
model, which predicts the mean free time of order 1025 s,
may produce an incorrect picture of the complex behav
involved in the rearrangements of the grains at the solid fr
tion of 0.58. Therefore, questions regarding the heterogen
and cooperativity of granular dynamics in glasses might
answered only by using a model that treats the contact fo
between the grains appropriately.

An important question to consider at this point is to wh
precision could a linear model as suggested in@2# predict the

FIG. 9. Instantaneous cluster size probability density distri
tion in the computational box atFs50.586. Inset: A chainlike clus-
ter consisting of eight frictional particles found in the computatio
box.
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contact forces between the grains. To address this con
the differences between the linear model@2# and nonlinear
model predictions are discussed below. In the nonlin
model, during the contact of grainsi and j the former grain
feels a force, which is given by

Fi j 5~Knd i j
3/21Gn~Vn!ḋi j • k̂ i j !k̂ i j 2HminH mFi j • k̂ i j ,Gt~Vn!

3F k̂ i j 3S V i j
imp

uV i j
impu

3 k̂ i j D G•V i j
impJ JF k̂ i j 3S V i j

imp

uV i j
impu

3 k̂ i j D G .
~20!

HereGt(Vn) represents the dynamic damping coefficient
the tangential direction, which characterizes the restitution
velocity in the tangential direction for nonslipping contac
Here it is assumed thatGt(Vn)5 1

2 Gn(Vn)50.68(Vn /V0)1/5

10.0315(Vn /V0)2/5 kg/s.
Using a nonlinear model for beads withs54.76 mm and

densityr52500 kg/m3, the effective lifetime of the chain is
found to be as short as 331025 s, but the maximum intra-
particle forces are quite large compared to those predicte
the linear model. Again by considering the measured fo
fluctuations in @4# it appears that the nonlinear frictiona
model could predict the interactions of grains in dense gra
lar flows more precisely than a linear model.

Figure 9 illustrates the instantaneous cluster size distr
tion in a sheared dense granular assembly with a solid f
tion of about 0.586 for which particle-particle interaction
were modeled using the aforementioned nonlinear mo
Surprisingly, the changes in cluster size distribution are sm
when a linear model was used. However, note that the us
periodic boundary conditions may inhibit the occurrence
larger structures in a computational box whose length is
particle diameters.

As discussed above, the ordering of particles as illustra
in Fig. 1 was observed neither in simulations of the u
bounded system of particles with rough surfaces nor in th
in which the particles were smooth. Therefore, simulations
bounded shear flows of a granular material for which
wall effects are significant are required to investigate
experimentally observed transition to an ordered state.

IV. BOUNDED SHEAR FLOWS

Methods such as photoelasticity@51# can be used to dis
play the contacts between particles in dense bounded s
flows. However, determining the contact duration betwe
particles remains a difficult task. In this context, numeric
analysis could provide some guidance. For instance,
analysis of the impact between grains discussed in the
ceding section may be useful in calculating the duration
impact in terms of the size, relative velocity of impact, a
physical properties of the solid. The obtained results show
that the average duration of an impact in the experime
apparatus of@4# could be about 531025 s for glass beads o
diameter 4 mm. It was also found that the duration of imp
is significantly longer for larger particles. The ratio of th
impact duration to the particle mean free time was identifi

-

l
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FINE STRUCTURES IN SHEARED GRANULAR FLOWS PHYSICAL REVIEW E66, 021303 ~2002!
FIG. 10. ~a! Dimensionless normal stressP* exerted on the upper wall versus dimensionless timet* for smooth particles atFs'0.2 and
the apparent shear rate of«̇52 s21, for e050.93 ands* '0.032. Inset: Distribution of dimensionless velocity as a function of dimension
distance inz direction. ~b! Variations of the normalized solid fraction of light particles as a function of dimensionless distance inz
direction at different dimensionless timest* . Squares are att* 50, triangles are att* 524, circles are att* 533. The solid lines are visua
fits through the data. Inset: Variation of the total solid~light and dark! fraction as a function of dimensionless distance in thez direction. The
dashed line represents the average solid fraction.~c! Variations ofTz* as a function of dimensionless distance in thez direction.
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as a criterion for selecting the relevant model for the sim
lation of sheared granular flows. In this light, a modifi
hard-sphere model, which is an event-driven algorithm, m
not be recommended for a system whose solid fraction
higher than 0.56. For more dense systems, for which
precise information about the rearrangement of grains is
sential, a more computationally intensive force-driven alg
rithm based on the particle dynamics model is recommend

In this section, simulation results for the hard-sphe
model for bounded shear flows at moderately dense
dense solid fractions, for various values of the phenome
logical parameters, are compared qualitatively to the res
of recent experiments. Moreover, the predictions of t
model in the presence of gravity are also included, wh
could help to distinguish the effects of different factors in t
results of the simulation. Then, the rough pictures provid
by the hard-sphere models are refined by performing si
lations using the particle dynamics model to obtain an
creased understanding of dense granular systems, espe
their transitions to a solid phase.

A. Fixed volume simulations

For the fixed volume bounded shear simulations, the o
modification to the computational box shown in Fig. 2~a! is
the introduction of two rough walls with a fixed separati
distance, each comprised of an irregular cubic array of
massive hemispherical particles with the same diamete
the interior particles. Here, the interior particles are driv
into shearing flow by moving the top and bottom walls a
velocity Vx0 in opposite directions along thex direction.
Thus, there are no periodic boundary conditions in the dir
tions normal to the walls, which are located atz56Lz/2.
The simulations in this section are organized to investig
under what conditions the results presented in Fig. 1,
which smooth steel balls were used, can be reproduced.
that it is likely that the granular assembly in Fig. 1 w
highly cooled, resulting in the formation of an ordered cry
tal. As a result, the granular assembly had undergone a s
tural arrest, where self-diffusivity of the grains becom
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zero. In this light, the particle diffusive motion will be mon
tored to distinguish a disordered state from an ordered
tem.

The first case is the bounded shear flow of a modera
dense system of about 10 000 smooth particles. The valu
the solid fraction including the wall particles is close to 0
with the solid fraction of the wall particles slightly highe
than that in the bulk. The particles with smooth surfac
having a coefficient of restitution ofe050.93 and surface
friction of m50, are sheared at the apparent rate of 221

between walls separated by a distanceLz'30s. Here, the
values of the particle surface parameterse andm, for colli-
sions between interior particles and wall particles are ta
to be the same as those for collisions between interior p
ticles. To ascertain that the period of the run was lo
enough for the system to come to a steady state, the no
stress at the upper wall was recorded. The time series for
quantity in a dimensionless form,P* 5P/rps2«̇2, is illus-
trated in Fig. 10~a!. Here, rp is the material density. The
eqiulibration period, which is the period during which a
memory of the initial configuration is lost and the syste
comes to a steady state, was found to bet* '20. Ordering
was not found to occur for this case, which implies tha
strong particle diffusive motion would be expected in t
direction of the velocity gradient. Given the presence
strong mixing in the system of smooth particles, an obvio
question is how would the diffusive motion of the grain
differ for the cases presented in Figs. 10~b! and 4~a!. Note
that the solid fraction of the bounded flow in Fig. 10~b! is the
same as that of the unbounded flow of Fig. 4~a!. To address
this question, the diffusive motion of grains in a bound
shear flow at moderately high solid fractions is analyzed
the following section.

1. Lateral diffusive motion in a moderately dense bounded flow
of smooth grains

The local descriptions for the velocity fieldsV(z)*
5@V(z)/Vx0#ex at t* '30, as illustrated in the inset of Fig
10~a!, are obtained in the same way as described in the
ceding section. It is interesting to note that large slip velo
3-15
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ties exist at the walls. Since the rate of temperature gen
tion is controlled by shear work, these slips result in a la
translational temperature near the wall, as shown in F
10~c!. The energy is transferred by means of thermal dif
sion to the colder central region, in which the rate of ene
generation is lower due to the moderate velocity gradie
Thermal diffusion is caused by the relative motion of t
particles due to the presence of a translational tempera
gradient. The drift induced by the temperature gradient, i
dimensionless form, may be characterized in terms of
thermal diffusion coefficient@26# DT , which may be given
as

ruz* 52rDT*
] ln T*

]z*
. ~21!

In the above,r is the particle number density,uz* 5uz /s«̇
represents the dimensionless diffusion velocity in the dir
tion of velocity gradient,z* 5z/s is the dimensionless dis
tance, «̇ is the apparent shear rate, and the dimension
thermal diffusion is defined asDT* 5DT /s2«̇. In addition, if
not all of the particles in the system are sheared uniformly
may occur in systems such as in@21# @also see Fig. 12~d!#,
then particles could migrate from the high-shear region at
wall to the low-shear region in the center. The drift induc
by stress may be given as

ruz* 52B*
]r U* ~z!

]z*
, ~22!

where B* 5B«̇ is the dimensionless particle mobility an
U* (z)5U(z)/(s«̇)2 represents a dimensionless potenti
Approximate expressions for the particle mobilityB and the
potential U for a moderately dense system comprised
smooth particles are given in Appendix.

The above-mentioned drifts induce a particle number d
sity gradient in the system, which results in a flux of t
particles from the central region towards the wall. This fl
caused by Fickian diffusion may be given as follows:

ruz* 52Dz*
]r

]z*
. ~23!

The net flux, with respect to the center of mass refere
frame, is given by the sum of the fluxes~21!–~23!:

ruz* 52S rDT*
] ln T*

]z*
1B*

]rU* ~z!

]z*
1Dz*

]r

]z* D .

~24!

Substitution of this expression for the flux into the equat
of continuity @52# yields the following result:

]r

]t*
5V* ~z!

]r

]x*
2

]

]z* FrDT*
] ln T*

]z*

1B*
]r U* ~z!

]z*
1Dz*

]r

]z* G , ~25!
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where x* 52x/Lz represents the dimensionless distance
the direction of mean flow.

Equation~25! provides a convenient picture for the pa
ticle diffusive motion in the lateral direction, for which th
profiles of temperature and solid fraction are shown in F
10. Since no simple solution exists for Eq.~25!, it was sug-
gested in@21# that a simplified form of Eq.~25!, namely,

]r

]t*
52Dz*

]2r

]z* 2 , ~26!

might be of use in predicting the particle diffusive motion f
from the walls in the fully developed part of their channe
Equation~26! addresses the local aggregation and redisp
sion of particles in the above-mentioned regions, which c
ate local density fluctuations. Assuming that these fluct
tions dissipate according to Fick’s law, an expression may
obtained for the diffusion coefficient, namely, Eq.~19!,
which should be applied to the time regions where the me
square displacement varies linearly witht*

2. Particle diffusive motion and transition to order in dense
bounded flows

The validity of Eq.~19! is questionable for a dense syste
whose local description for the velocity field, solid fractio
and temperature are given in Fig. 11, where the coefficien
restitution ise050.84. However, in the absence of a mo
reliable theory for the treatment of particle diffusive motio
in dense granular flows, Eq.~19! is used to estimateDz* for
the tagged particles initially located at20.1<z<0.1 in the
central region, where the gradients may not be present. D
ing the period of sampling oft* '3, no tagged particles
were found to enter the wall region, in which neither t
effects of gradients can be neglected nor the use of lin
laws such as those used to obtain Eq.~26! is justified. Figure
11~f! illustrates the mean-square displacement in thez direc-
tion for the tagged particles,^Dz* 2&, as a function oft* . At
long times,^Dz* 2& appears to behave linearly int* with
Dz* '0.054, which is very close to the values of the dime
sionless diffusivity measured in the experiments of Bridgw
ter @18#. It is worth mentioning that the calculation is base
on the local value of shear rate, namely, 1.5 s21. The solid
fraction and dimensionless temperature in the central reg
are found to be 0.58 and 1.38, respectively. The high gra
lar temperature in the central region, which resulted in a h
value for Dz* , namely, 0.054, could also play a role in th
stability of the flow. This observation also highlights the si
nificant role of T* in the particle diffusive motion in the
lateral direction.

To focus on finding the dominant parameters in the s
bility analysis for the bounded flow, in the above-mention
simulation of smooth particles using the modified ha
sphere model, the solid fraction is increased to a value
0.59 and the apparent shear rate is decreased to 2 s21 so that
the local shear rate is nearly the same as that of the prev
case. Although this solid fraction is beyond the reco
mended range of applicability for the hard-sphere model,
simulation results could nonetheless provide a rudimen
3-16
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FIG. 11. ~a! Dimensionless normal stressP* exerted on the upper wall versus dimensionless timet* for smooth particles atFs

'0.565 and the apparent shear rate of«̇54 s21, for e050.84 ands* '0.048. ~b! Projection of interior particle positions onto th
dimensionlessyz plane for the sample taken att* '60. ~c! Variations of the local solid fraction of the sample shown in~b! with the
dimensionless distance in thez direction. The dotted line corresponds to the solid fraction obtained using 42 bins.~d! Variations of the local
dimensionless axial velocityV(Z)* 5V(Z)/V0x with Z* . ~e! Variations ofTz* with Z* for the apparent shear«̇54 s21. The solid lines in
~c!–~e! are fits.~f! Variations of^Dz* 2& with the dimensionless delay timet* for the tagged particles initially located at20.1<Z* <0.1.
The solid lines represent linear fits.
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insight into ordering in dense granular systems. As see
Fig. 12~a!, the period of equilibration is long. The projectio
of the position of the interior particles onto theyzplane of a
sample taken att* '100 is illustrated in Fig. 12~b!. As
shown in this figure, the system had become ordered with
crystallized regions visible at (20.3,0)3(20.1,0.2) and
(0,0.3)3(0.21,0). Figure 12~c! plots the variations of solid
fractions in the direction of the velocity gradient. Contrary
what is observed in Fig. 11~c!, this profile exhibits spikes in
the central region, indicating the presence of layers of
dered particles in the system. Perhaps the most notice
difference between the present case and the previous
can be found by comparing the steady-state values of
dimensionless normal stress at the walls, as shown in F
11~a! and 12~a!. It is surprising that the dimensionless no
mal stresses at higher solid fractions tended to be lower
those generated at lower solid fractions. The difference
stresses could be due to the smaller wall slip velocities
illustrated in Fig. 12~d!, which lead to the correspondin
smaller rates of energy production. At high solid fraction
for particles in a layer adjacent to the wall, an enhancem
in the particle-wall collision rates may be observed. T
movement of a tagged particle away from the wall afte
collision is limited due to the presence of a dense layer
moving particles in the neighboring layer below the partic
Upon colliding with a neighboring moving particle, a tagg
particle is likely to travel back towards the wall particles.
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this case, due to the enhancement in the rate of particle-
collisions and also the limited displacement in the verti
direction, the particles are moved along horizontally with
velocity more correlated to that of the wall particles, whi
results in a smaller wall slip velocity. This observation su
gests that the causes of smaller wall slip velocity at h
solid fractions may be understood in terms of the relations
between the particle-wall and particle-particle collision rat

As shown in Fig. 12~e!, the lower production rates at th
walls result in local temperatures that are below the melt
temperature for this system, which leads to a transition
order. The results obtained suggest that rapid shear flow
smooth particles, at a very high solid fraction, become
stable with respect to a density wave in the direction of
velocity gradient. The phase transition as discussed ab
occurs when variations of the density and velocity fields
comparable to a particle diameter. In order to predict t
behavior a theory should be devised which captures the c
cal wave number regime at intermediate wave numb
where the static structure factorS(kz) has its maximum, as
shown in Fig. 13. This figure illustrates the static structu
factor of a sample illustrated in Fig. 12~b! taken aftert*
'100. The static structure factorS(kz) was obtained from
the initial value of the intermediate-scattering function, d
fined as@53#

F~k,t !5^Q~k,0!Q~2k,t !&, ~27!
3-17
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FIG. 12. ~a! Dimensionless normal stressP* exerted on the upper wall versus dimensionless timet* for smooth particles atFs

'0.59 and the apparent shear rate of«̇52 s21, for e050.84 ands* '0.048.~b! Projection of interior particle positions onto the dime
sionlessyz plane for the sample taken att* '100. ~c! Variations of the local solid fraction of the sample shown in~b! with Z* . The dotted
line corresponds to the solid fraction obtained using 42 bins.~d! Variations of the local dimensionless axial velocityV(Z)* with Z* .
~e! Variations of the local dimensionless translational temperature in the direction of velocity gradientTz* with Z* for the apparent shea
«̇52 s21. The solid lines in~d!, ~e! are fits.
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where Q(k,t)5N1/2( j 51
N exp@ik•r j (t)#. Here, the attention

is confined tok vectors in thez direction. The smallest wave
numberkz that can be studied is 2p/Lz . The dimensionless
variable kzs is used to express the structural correlati
shown in Fig. 13, which provides a useful guide to structu
effects on fluctuations. As seen in Fig. 13, the height of
first peak reaches a value of orderN. This indicates the pres
ence of a near-perfect layering into planes with well-defin
layer spacing as seen in Fig. 12~b!. The region of wave num-

FIG. 13. Static structure factorS(kz) of a sample whose projec
tion of interior particle positions onto the dimensionlessyz plane is
shown in Fig. 12~b!. Inset: Static structure factorS(ky) of the same
sample.
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bers where structural effects are expected to be stronge
near the first peak. It is interesting to observe that the sec
peak inS(ky), as illustrated in the inset of Fig. 13, becom
longer than the first peak. This observation may suggest
presence of regions of cuboctahedral symmetry in the c
putational box. Comparing the present results with Fig. 1,
hard-sphere model appears to be capturing qualitatively
flow behavior for a wide range of flow conditions.

In order to show that the ordering transition persists an
not merely an artifact of the cubic computational box, t
gap between the walls is reduced by approximately half. T
initial configuration of interior particles projected onto theyz
plane is shown in Fig. 14~a!. To keep the solid fraction the
same as the previous simulation, namely, 0.59, the numbe
interior and wall particles was reduced to 4296 and 4
respectively, withLz'10s. The results for this run indicate
a transition to order, evidence of which is shown in F
14~b!, which represents the configuration of interior particl
projected onto theyz plane. Using the smooth particles, th
stick-slip dynamics is observed in the time series of dim
sionless normal stress, as shown in Fig. 14~d!. This result is
consistent with the recent findings by Miller, O’Hern, an
Behringer@4#, who have found that the stick-slip motion ma
vanish upon increasing the separation between the w
@54#.

A similar behavior can be observed by comparing t
time series of dimensionless normal stresses obtained a
same solid fraction, but with different separations betwe
3-18
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FINE STRUCTURES IN SHEARED GRANULAR FLOWS PHYSICAL REVIEW E66, 021303 ~2002!
FIG. 14. ~a! Projection of the positions of the interior particles onto theyz plane at the onset of shear.~b! Projection of the positions of
the particles onto theyz plane at the steady-state condition for rough particles atFs'0.59 and the apparent shear rate of«̇54 s21, for
e050.84 ands* '0.1. ~c! Variation of the local solid fraction of the sample shown in~b! as a function ofZ* . The dashed line correspond
to the solid fraction obtained using 17 bins. The solid line is a fit.~d! Dimensionless normal stressP* exerted on the upper wall versu
dimensionless timet* at Fs'0.59 and the apparent shear rate of«̇54 s21 for e050.84 ands* '0.1. ~e! Projection of the positions of the
particles onto theyz plane for smooth particles atFs'0.59 and the apparent shear rate of«̇54 s21, for e050.84, s* '0.1, ands«̇2/g
'0.5.
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the walls, as shown in Figs. 12~a! and 14~d!. Stick-slip mo-
tion has also been observed in studies of boundary lubr
tion @55#. In the present system stick-slip motion may
associated with the phase transition between ordered s
and disordered kinetic states of the thin layer of partic
separating the moving wall from the crystallized region
cated at (20.5,0.5)3(0.05,0.18).

The mean dimensionless normal stress is about one o
of magnitude greater in the present simulation than in
previous simulation with the same solid fraction but w
different wall separation. The decreased wall separation m
likely resulted in a different instability behavior, whic
caused the system to undergo a transition to a mixture
crystalline and noncrystalline two-phase flow with a nea
planar interface normal to the direction of the velocity g
dient. Clearly, an explanation of this phenomenon require
theoretical stability analysis, where variations of the dens
and velocity fields on the length scale of a particle diame
play a key role in the instability scenario. It is worth me
tioning that the profile of the local solid fraction, as illu
trated in Fig. 14~c!, appears to be very similar to that for th
experiments of@29#, in which partial shearing occurred
However, in their system the formation of a nonsheara
section adjacent to the bottom wall appears to be cause
gravity. In the presence of gravity, as can be seen in F
14~e!, the nonshearable section, whose density is higher
that of the surrounding fluid, has migrated downward.
order to take into account the effect of gravity, the collisi
times were calculated using the quartic equation~9! with ai ,
which represents the acceleration vector of the interior p
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ticles, set to22s«̇2ez m/s2 directed in the negativez direc-
tion. The accelerations of the wall particles,aw , are assumed
to be zero.

The absence of a disordered phase in the simulation
the high solid fraction of 0.59 suggests that the strong mix
reported in@21# is unlikely to be predicted for a system a
this solid fraction. For this reason, the mean bulk solid fra
tion in @21# should be close to 0.565. Recall that at this so
fraction the simulation of shear flow of smooth particles w
a wall separation ofLz'21s resulted in a disordered phas
in the central region withDz* '0.054.

At this stage it would be useful to investigate the effect
wall separation distance on the flow stability. At the so
fraction of 0.565, the apparent shear of 4 s21, the wall sepa-
ration of Lz'10s, and the surface parameterse050.84, m
50, the time series for the dimensionless normal stres
shown in the inset of Fig. 15~a!. The mean value of the
dimensionless normal stress in the interval of 150,t*
,350 is found to be 15.5, which suggests thatTz* , whose
profile is illustrated in Fig. 15~a!, is large enough to induce
mixing. As seen from the inset of Fig. 15~b!, the local shear
rate in the central region is nearly constant, with a value v
close to the apparent shear of 4 s21. Using Eq.~19! to esti-
mate Dz* for the tagged particles initially located at20.1
<Z* <0.1, where the effects of gradients may be unimp
tant, results in a value ofDz* '0.015. According to the pro-
jection of the position of the interior particles onto theyz
plane of a sample taken att* '150, as shown in Fig. 15~d!,
some order in the central region can be observed, wh
3-19
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POLASHENSKI, ZAMANKHAN, MÄKIHARJU, AND ZAMANKHAN PHYSICAL REVIEW E 66, 021303 ~2002!
FIG. 15. ~a! Variation Tz* with Z* for the ap-
parent shear«̇54 s21. The solid line is a fit. In-
set: Dimensionless normal stressP* exerted on
the upper wall versus dimensionless timet* for
smooth particles atFs'0.565 and the apparen
shear rate of«̇54 s21 for e050.84 and s*
'0.1. ~b! Variations of^Dz* 2& with the dimen-
sionless delay timet* for the tagged particles
initially located at20.1<Z<0.1. The solid lines
represent linear fits. Inset: Variations ofV(z)* as
a function ofZ* . The dashed line is a linear fi
whose slope is very close to that of the appare
shear. The dotted line is a nonlinear fit.~c! Varia-
tion of the local solid fraction of the sampl
shown in ~d! as a functionZ* . The dashed line
corresponds to the solid fraction obtained usi
17 bins. The solid line is a nonlinear fit.~d! The
projection of the positions of the particles on
the dimensionlessyz plane for a sample taken a
t* '150.
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explains the difference between the estimated values ofDz*
in the present case and the previous case. Again, this ob
vation suggests that the separation between the walls pla
key role in the stability of the flow.

3. Bounded shear flow of rough particles

In the preceding section, simulations with frictionless,
elastic grains at a shear rate of 4 s21 revealed that an initia
configuration with random distributions of positions and v
locities of particles may finally evolve to a state where
ordered solid phase is formed in a large part of the com
tational box as illustrated in Fig. 14~b!. Thus, this configura-
tion was selected as a new initial configuration for a serie
simulations, to investigate the effect of phenomenologi
parameters on the vanishing of the ordered solid phas
should be noted that the creation of the solid phase is in
pendent of the initial random state, but depends mainly
the wall separation distance and the mean solid fraction.
view of the initial configuration of particles projected on
theyzplane as well as the variation of the local solid fracti
in the direction of the velocity gradient are illustrated in Fig
14~b! and 14~c!, respectively. Computations were perform
to explore the importance of the particle roughness on
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vanishing of the ordered structure present in the initial c
figuration. Two different sets of values were used for t
surface parameterse andm, for steel pucks and glass bead
as introduced in the preceding section.

One signature of order in the system is the observed st
slip motion in the normal stress signal, as discussed in
preceding section. Hence, the absence of stick-slip dynam
in the normal stress signal could serve as a criterion of
melting. Using the suggested values for surface parame
e050.93,m50.123, as illustrated in Fig. 16~a!, the melting
of granular crystals occurred aftert* '170. The inset of Fig.
16~a! plots the probability densities for the dimensionle
normal stress for both cases after the systems have reac
steady state. The observed shear-induced melting in
friction-dominated system may be interpreted consider
the significance of rotational diffusion, which in a monodi
perse system is a measure of the rate of change of the d
tion of bonds joining a particle with its nearest neighbors.
the aforementioned system the conversion of rotational
ergy to translational energy enhances the translational d
sion, which reduces the bond orientational order. This in
esting combined translational-rotational diffusion proce
may warrant further investigation. More evidence support
-

FIG. 16. ~a! Dimensionless
normal stressP* as a function of
t* . Inset: The probability density
function of the dimensionless nor
mal stress att* .170. ~b! Varia-
tions of the solids fraction of a
sample taken att* '170 withZ* .
Inset: Variations of the corre-
spondingVx* with Z* at shear rate
«̇54 s21.
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FIG. 17. ~a! Variations of P*
with t* . Inset: Probability density
function of the dimensionless nor
mal stress att* .70. ~b! Varia-
tions of the solid fraction of a
sample taken att* '70 with Z* .
Inset: Variations of the corre-
spondingVx* with Z* at shear rate
of «̇540 s21. The surface param-
eters aree050.93,m50.123, and
b050.4.
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the aforementioned hypothesis is found considering
shorter melting time at an apparent shear rate of 40 s21, as
shown in Fig. 17~a!, compared to that illustrated in Fig
16~a!. For the same solid fraction and dissipation paramet
the rate of melting increases at the higher shear rate, du
higher rotational energy production. The slip velocity at t
walls also increases, as shown in the insets of Figs. 16~b! and
17~b!.

It can be argued that the order-disorder transition can
be determined reliably by monitoring only the normal stre
at the wall, which represents a macroscopic quantity of
system that may not convey the precise information of
local structure in the central region of the system. The v
ishing of the ordered phase may be more reliably monito
by considering the time variations of the invariant quant
Q6 , which characterizes the average bond orientations
system of particles. Initially, the value ofQ6 in the ordered
phase@namely, 0.01<Z* <0.2 in Fig. 14~b!# was found to be
0.5712, which is very close to the value ofQ6 for a system
with cuboctahedral symmetry, namely, 0.574. It was o
served that the values ofQ6 decrease sharply for the partic
roughness parameters, such as those for glass beads or
pucks, approaching steady-state values ofQ6 of 0.422 and
0.414, respectively, at the shear rate of 4 s21. These values
for Q6 imply that the frictional impulse changes the flo
dynamics between the particles, resulting in a more ra
rate of vanishing of the ordered solid phase for the gl
beads than for the steel pucks.

By comparing these results with those of real syste
such as the results shown in Fig. 1 in@4#, it appears that
neither the simulation performed using the particle surf
properties of glass beads nor that with the particle surf
properties of steel pucks fully reproduces the characteris
of real granular systems. In fact, the Gaussian form for
obtained probability distribution, as shown in the insets
Figs. 16~a! and 17~a!, will give an entirely incorrect picture
of the large-scale fluctuations observed in the experime
Note that the instantaneous local values of the normal w
stresses have been found experimentally to be far larger
the mean, possibly as much as an order of magnitude@4#,
which indicates that the occurrence of these events are m
more frequent than what would be predicted with the Gau
ian form. It turns out that the major features observed in
experiments@4#, as reported in their Fig. 1, such as the ex
tence of instantaneous forces much larger the mean, ca
02130
e

s,
to

ot
s
e
e
-
d

a

-

teel

id
s

s,

e
e

cs
e
f

ts.
ll
an

ch
s-
e
-
be

reproduced using a system whose dynamics are collis
dominated.

The plot of the probability density for the dimensionle
normal stress signals of Fig. 14~d!, as shown in Fig. 18,
suggests that the occurrence of the large forces in the sy
in which the dynamics are collision dominated is much mo
likely with the exponential form than with the Gaussia
form. These considerations imply that in the absence of gr
ity, bounded dense granular flows form ordered structu
provided the dynamics are collision dominated. Consider
that the probability distributions of force in stationary be
packs can be described by an exponential function@56#, the
difference between the signals of the collision-domina
system and the friction-dominated system could well be
tributed entirely to the existence of a solid region as sho
in Fig. 14~b!. More evidence supporting the aforemention
conjecture can be found by considering the dimension
normal stress signals in the quasifluid phase adjacent to
bottom wall with the probability distributions of the Gaus
ian form. Note that the aforementioned quasifluid phase
phase having some correlations in the orientations of part
clusters but is incapable of withstanding shear.

It appears that a hard-sphere model captures the esse
physics for describing flow dynamics for a wide range
flow even at high solid fractions. However, an important d
ference exists between the sheared granular assembly a
scribed in Fig. 14 and the granular flows reported in Ref.@4#.
The representative spectra for 2-mm glass beads as pres
in Fig. 2 of @4# do not display any sign of the periodic natu

FIG. 18. Probability density function of the dimensionless n
mal stressP* of Fig. 14~d!.
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POLASHENSKI, ZAMANKHAN, MÄKIHARJU, AND ZAMANKHAN PHYSICAL REVIEW E 66, 021303 ~2002!
in the corresponding signal. Therefore, the nature of the n
mal stress signal shown in Fig. 14~d! requires further inves-
tigation. To address this concern the signal is further a
lyzed using a space-scale map of wavelet transforms@57#. A
simple understanding of the wavelet transform can be
tained by its analogy with the windowed Fourier transform
the similar time-frequency description of any given sign
@57#. A wavelet function can be dilated or translated alo
the time axist. These operations are characterized by t
parameters, namely, scale,a, for dilation and center of wave
let, b, for translation. Any scale addresses a specific pack
of frequency contents in the wavelet. The stretched wave
that correspond to large scales contain low frequenc
while the compressed wavelets corresponding to small sc
have a high frequency content.

The wavelet transform of a functionf (t) using the wave-
let c is simply defined as@57#

C~a,b!5
1

Aa
E f ~ t !cS t2b

a Ddt. ~28!

Here a and b are real numbers that vary continuously in
continuous wavelet transform. A suitable type of wavelet
the present case is the Morlet wavelet, which has been
viously used in the analysis of sound patterns@58#. By using
such a complex-valued wavelet in the calculation of
wavelet coefficient modulusC(a,b), the spurious oscilla-
tions @57# that could appear in visualizing the wavelet coe
ficient modulus may be eliminated. The mathematical
pression of the complex-valued Morlet wavelet is given
@57#

cS t2b

a D5
1

p1/4expF2
~ t2b!2

2a2 GexpF i
5~ t2b!

a G . ~29!

As shown in Fig. 19~b!, the modulus of wavelet coefficient
of the signal in Fig. 14~c! shows strong analogy to that of
sawtooth sweep over the frequencies in Fig. 19~a!. The saw-
tooth signal is in fact a sine wave that is subjected to
frequency decrease beyond a certain time. This freque
slip has been manifested as an increase of scale parame
the corresponding map of the wavelet coefficient modu
namely, larger scales represent lower frequencies. Thus
existence of higher frequencies can also be detected, sh
as the horizontal green thin line at a lower scale in F
19~b!. Note that the scale axis of the wavelet coefficie
modulus map in Fig. 19~a! is identical for the rest of maps in
Fig. 19. The origin of the slight period changing shown
this figure might be associated with some dynamical ins
bility in the sheared granular flow. These long lived freque
cies have not been observed in the continuous wavelet tr
form of the signal in Fig. 16~a! corresponding to the
frictional model, as shown in Fig. 19~c!. Here, the wavelet
transform of Gaussian white noise is shown in Fig. 19~d! for
comparison. In light of the above, it may be concluded t
the nature of the stick-slip motion in the annular Coue
apparatus of@4# could be different from that found in th
simulations. Apparently, the periodic nature of the signal
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illustrated in Fig. 14~d! could be associated with the period
shear-induced melting and reordering of the layer of partic
adjacent to the wall.

B. Effects of gravity

As speculated by Thompson and Grest@2#, the origin of
stick-slip dynamics could be periodic dilatancy transitio
and gravitational compactification. They found that at sh
rates below a certain critical value, sheared granular flo
are unstable to gravitational compactification. For su
cases, only a portion of the material was sheared, while
rest of the material appeared to be in rigid-body motion
low the shearing grains. This behavior gave rise to a sh
induced phase boundary between ordered and disord
states.

In order to reproduce the aforementioned behavior, sim
lations were carried out using a collision-dominated syst
in the presence of the gravitational acceleration,g m/s2, with
the initial configuration as shown in Fig. 14~b!. In the simu-
lations of this section, about 4300 glass beads were u
with a diameter of s55 mm and the density ofr
52500 kg/m3. The width, length, and height of the compu
tational box were selected to be 10, 10, and 5 cm, resp
tively. The value of the dimensionless parameters«̇2/g is set
to 0.5 and the coefficient of restitution is set toe050.84. So
that the simulations would as closely as possible resem
the experiments, the bottom wall was fixed and the top w
was set in motion with the velocity ofV0x522.5 cm/s pro-
ducing an apparent shear rate of«̇54.5 s21. In the presence
of gravity, after a very short timet* '3, the ordered solid
phase, whose density is higher than that of the surround
quasifluid phase, completely migrated downward, as sho
in Fig. 14~e!. After the settling time, a steady motion wa
observed where three layers of particles flowed over the
dered solid phase. These layers are shown in the inset of
20~a!, which plots the local solid fraction as a function ofZ.
For these layers located in the regionZ.3.2 cm, it is found
that the value ofQ6ANb is 1.85. For this value, the phas
that is formed over the ordered solid phase may be con
ered as a disordered phase. The profiles of the stream
velocity component and granular temperature in thez direc-
tion for samples taken aftert* .3 are presented in Figs
20~a! and 20~b!, respectively. At the low shear rates, th
constant-volume simulation with only the upper wall in m
tion results in a decay in the height of the fluid phase to
point where no shearing motion is possible. To prevent t
from occurring, simulations were performed in which th
upper wall was maintained at a constant load ofW
'3.0 g N and was connected by a Hookian spring with
spring constantK to a driving motor and pushed with a con
stant velocityV0x in the horizontal direction.

The simulations were continued using the surface par
eterse050.84,m50.41. As shown in the preceding sectio
of simple shear flow of rough particles, a chainlike cluster
likely to be formed in this system. After 108 collisions the
generalized version of the nonlinear model~20! in which the
effect of gravity is taken into account was utilized, whic
should be valid at any solid fraction. The preliminary resu
3-22
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8 s.

.

FIG. 19. ~Color! Continuous wavelet transform.~a! Modulus of wavelet coefficients of a signal of period changing from 0.02 to 0.02
~b! Modulus of wavelet coefficients of time series ofP* at shear rate of«̇54 s21 and the surface parameters ofe050.93 andm50. ~c!
Modulus of wavelet coefficients of signal in Fig. 17~a! at 100,t* ,150. ~d! Modulus of wavelet coefficients of a Gaussian white noise
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of the dimensionless normal stress at the bottom wall in
steady-state condition are shown in Fig. 20~c!. Apparently
the signal is somewhat nonperiodic and the stick-slip dyna
ics can clearly be observed in the time series of dimens
less normal stress. However, longer simulations are requ
to obtain a more refined picture of the shearing motion
granular materials.

It is worth mentioning that the vertical motion of the u
per wall in the opposite direction of gravity was observe
This motion, which could be due to the dilatancy of t
granular material, might be linked to the formation of cha
in the granular assembly. Convincing evidence may be fo
by considering the presence of an ordered solid phase
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can withstand shear. The profiles of the local solid fract
and the local velocity, as illustrated in Fig. 20, should be ve
similar to those for the experiments of@29# in which the
dilatancy of granular assembly was reported. It is quite lik
that in their system the nonshearable section adjacent to
bottom was ordered. The signature of an ordered phase
also be seen in the background of the inset of Fig. 1 in@4#.
Therefore, it may be speculated that during the compac
period, while the upper wall moves downward, the dis
dered layers of particles flowing over the ordered solid ph
are compressed. At moderate shear rates, the thickness o
disordered layers is about three particle diameters. There
a number of chainlike clusters could easily form in the co
3-23
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FIG. 20. ~a! Dimensionless velocityV* as a function of distance in thez direction for glass beads under gravitational compaction proc
The top wall was set in motion horizontally with a velocity ofV0x522.5 cm/s producing a shear rate of«̇54.5 s21 with s«̇2/g'0.5. The
thickness of the nonsharable region is about 3.2 cm and the thickness of the disordered phase is 1.5 cm. Inset: Solid fraction as
of distance in thez direction.~b! Dimensionless translational granular temperatureTz* as a function of distance in thez direction. The solid
lines are nonlinear fits.~c! Typical time series for the dimensionless stressP* as a function of dimensionless timet* obtained using the
generalized version of the nonlinear model in which the effect of gravity is taken into account. The simulation parameters are sam
in ~a!.
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pressed disordered layers between the upper wall and
ordered phase, resulting in the cessation of the shearing
tion. In order to have continuous shearing, the granular
sembly would then have to dilate. It is of great interest
find out whether chainlike clusters would form during t
dilation period. To this end the processes of formation a
disintegration of clusters were carefully monitored. It a
pears that some arches could also form during the dila
period at the moderate shear rates mentioned above. H
ever, at high shear rates where the thickness of the disord
layers is quite large, a more smooth continuous shearing
tion would be expected. These observations enhance the
derstanding of the complex processes involved in the exp
ments of Refs.@4,29#. The stick-slip phenomenon in granula
flows is an interesting phenomenon that merits further inv
tigation.

V. CONCLUSIONS

The shear-induced motion of granular assemblies c
prised of a large number of viscoelastic, monosized, sph
cal particles in both unbounded and bounded systems
investigated using computer simulations. The solid fract
was varied from a low density system of 0.16 to a very h
density system of 0.59. Two different models were used
predicting the flow dynamics of granular assemblies, nam
the modified hard-sphere model in which collisions betwe
the grains are assumed to be instantaneous, and the
computationally intensive particle dynamics model in whi
the collisions have finite durations. A Hertzian-type mod
for the treatment of the viscoelastic behavior of the partic
in contact was also introduced.

The modified hard-sphere model was shown to replic
reasonably well some of the results predicted by kine
theory@25# at low and moderate solid fractions. Furthermo
this model was found to predict the basic features such
particle lateral diffusive motion in real sheared granu
flows, even at a high value of the solid fraction of 0.5
However, it was found that it would be difficult to simula
complex phenomena, such as jamming in systems with c
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stant volume, at values of the solid fraction larger than 0
using hard-sphere models. For these systems, the particle
namic model was found to more closely predict the form
tion of clusters when nonlinear viscoelastic grain behav
was assumed, as opposed to previously proposed linear m
els @2,9,10#. An even more reasonable representation of cl
ter formation was found by including the effects of surfa
friction in the model. Comparing the simulation results wi
the results of experiments in which force fluctuations we
measured@4#, it was found that a nonlinear model for th
viscoelastic frictional grains could predict the behavior of t
chainlike clusters more precisely than a linear model. Ho
ever, neither frictionless nor frictional particle models we
capable of predicting observed particle ordering@6# in un-
bounded flows. It is likely that in the system in which th
wall effects are not significant, the sheared granular ass
bly transforms to a glass state at solid fractions above 0

Particle ordering was predicted using the modified ha
sphere model for simulations of frictionless granular syste
in bounded shear flows even in the absence of gravity. It w
also found that the local solid fraction and the wall sepa
tion distance govern the stability of the flow. Values we
determined for the solid fraction and the wall separation d
tances at which a transition to order occurs. In these syst
the presence of an exponential behavior of the probab
distribution function was found in the normal stress sign
exerted on the wall, consistent with experimentally observ
force fluctuations@4#. Wavelet transform analysis was use
to show the existence of a characteristic frequency in
normal stress signal, indicating the presence of stick-slip
namics. For the range of shear rates studied, the simula
results for the rough model did not show the same stick-
behavior due to the vanishing of the ordered solid reg
caused by the presence of strong frictional interactions.
call that in@6# no order was observed using rough particles
the experiments.

The diffusive behavior of particles at moderately den
solid fractions in bounded flows was analyzed using a co
prehensive model based on the revised Enskog theor
3-24
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FINE STRUCTURES IN SHEARED GRANULAR FLOWS PHYSICAL REVIEW E66, 021303 ~2002!
granular fluids and on Grad’s method of moments. Form
expressions were derived for the particle self-diffusion co
ficient, particle thermal diffusion coefficient, and coefficie
of mobility. Additional theoretical study is required to cha
acterize further the particle diffusive motion in dense s
tems where cluster diffusion seems to be important.

Considering the ratio of the impact duration and the me
free time, the hard-sphere model was found to be approp
for solids fractions below 0.56. Above this value, a partic
dynamics model is recommended. However, it was sho
that the hard-sphere model could provide a rough picture
the shearing flow of the granular assembly even at solid f
tions above 0.56. It was shown that the rough picture p
vided by the hard-sphere model could be refined using
nonlinear particle dynamics model. For example, in orde
consider the effect of gravitational compactification, a stu
was performed in which gravity was considered and the v
tical motion of the upper wall was allowed. The modifie
hard-sphere model correctly predicted the formation of a
ordered layer of particles over the ordered solid phase
shearing motion of a granular assembly. The simulati
were continued using a nonlinear particle dynamics mo
which predicted the cluster formation more precisely. F
these conditions chain formation was found to be quite lik
in the disordered layers for frictional particles. The intere
ing stick-slip dynamics could be clearly observed in the n
mal stress signal for the bottom wall.

Fresh interpretations were given for the complex p
cesses observed in experiments of Refs.@4,29#. Additional
study is required to characterize further the flow dynamics
a granular assembly. Such a study should lead to the de
opment of advanced theories capable of describing com
processes in granular flows, which are of real significanc
facilitating the design of practical granular flow systems.
complement the simulation studies, additional experime
results should be obtained, for which vital information su
as solid fractions and particle surface properties should
reported. The absence of such information limits the
vances in the knowledge of the physics of granular flows t
could be obtained through comparisons of experimental
numerical results.
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APPENDIX

Consider a granular material consisting of a binary m
ture of differently colored smooth, spherical particles. F
this system, light and dark colors are represented by s
scripts l and d, respectively. The particles, which have th
same massesm and radiis but different number densitiesnl
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andnd, are sheared at a high shear rate. Due to the pres
of gradients in the mean flow, random fluctuations in t
local mean translational motion of the grains are genera
Since the particles in a rapid shear flow behave similar
molecules in a dense gas, methods from the kinetic theor
dense gases@59# might be used to describe the motion
particles in this system. For a nonequilibrium granular flu
in the limit of two-body forces between the particles, t
probability that at some instant of timet a particle of kindl
will be at locationr and have momentump within the re-
spective limitsdr anddp may be governed by the following
equation@52#:

] f l ~1!

]t
1cl

•

] f l ~1!

]r
1Fl

•

] f l ~1!

]c
52E E X l ,m

•

] f lm~2!

]c
drmdpm.

~A1!

Herecl is the instantaneous velocity of a particle of kindl,
X lm is the force on a particle of kindl due to all other par-
ticles, andFl is the force per unit mass acting on a particle
kind l due to external fields.

Equation ~A1! involves the pair distribution function

f lm(2)
, which is the probability that there is simultaneously

particle of kindl in the space element (dr ldpl) about (r l ,pl)
and another particle of kindm, which can be either light or
dark, in the space element (drmdpm) about (rm,pm). Thus, it
is needed to find an expression for the pair distribution fu
tion in terms of single particle distribution functions. If th
particle contacts can be regarded as nearly instantaneous
lisions, the distribution functions do not change apprecia
in a time interval comparable to the duration of a collisio
the gradients of inhomogeneities are small, and the assu
tion of particle chaos remains valid, Eq.~A1! reduces to the
generalized Boltzmann equation which governs the temp
change of the single particle distribution function of the p
ticle of kind l. Since the particle diffusion processes involv
in a granular fluid are of interest in the present study, the n
variableCl5cl2V, which is the particle peculiar velocity, i
introduced in place ofcl into Eq. ~A1!. As a result, the fol-
lowing kinetic equation is obtained@59#:

d fl ~1!
~r ,C,t !

dt

5F2Cl
•

]

]r
1S ]u

]r D :S Cl
]

]CD1S du

dt
•

]

]C
2Fl

]

]CD G
3 f l ~1!

~r ,C,t !1 (
m5 l

d E E s2@glm~r ,r1sku$ns%!

3 f l ~1!
~r ,Cl ,t ! f m~1!

~r1sk,Cm,t !

2glm~r ,r2sku$ns%! f l ~1!
~r ,Cl ,t ! f m~1!

~r2sk,Cm,t !#

3~clm
•k!H~clm

•k!dk dcm, ~A2!
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POLASHENSKI, ZAMANKHAN, MÄKIHARJU, AND ZAMANKHAN PHYSICAL REVIEW E 66, 021303 ~2002!
Hered/dt5]/]t1V•]/]r is the substantial time derivative
$ns%5$nl ,nd% are solid component densities,V
5(m5 l

d mmcm/(m5 l
d mm is the mean mass velocity of th

mixture, clm5cl2cm is the relative velocity of the two par
ticles of kindl and kindm, k is the unit vector directed alon
the line from the center of the particle of kindm to the center
of the particle of kindl at contact, andH is the Heaviside
step function. Also, factorsglm are introduced to take into
account the difference in position of the colliding particles
binary collision dynamics, and the resulting increase in
frequency of collisions. Following van Beijeren and Ern
@60#, glm are chosen to be the mixture radial distributi
functions at contact, which are evaluated as nonlocal fu
tionals of the density fields of the two components in t
granular fluid mixture. Thus,

glm
„r ,r6sku$ns~r !%…

5gc
lm
„su$ns~r !%…

1(
q5 l

d E drqHlmq
„r ,r6sk,rqu$ns~r !%…~rq2r !•

]nq

]r

1O~¹2!. ~A3!

In the above equation,gc
lm is the equilibrium value of the

radial distribution function at contact for particles of kindl
andm:

gc
lm~su$ns~r !%!

511 (
q51

d

nq~r !E Vlmp~r ,r6skurq!drq1¯ .

~A4!

Here, Hlmq
„r ,r6sk,rqu$ns(r )%…5Vlmq(r ,r6skurq)

1(q851
m nq8(r )*Vlmqq8(r ,r6skurqrq8)drq81¯ , which is

symmetric under the interchange of superscriptl and m.

Also, V(r ,r6skurq) and V(r ,r6skurqrq8) represent Hu-
simi functions. As discussed earlier, the above approxima
for the radial distribution function at contact is not qui
appropriate for the present study of a sheared granular
where a spatial preference for collisions is imposed by
velocity field. However, there is presently no better appro
mation available.

To derive the hydrodynamic equations of a granular fl
mixture, which are valid outside the time regime for whi
Eq. ~A2! is exact. This equation is first multiplied bymc l ,
wherec l is any property of the particles of kindl. The re-
sulting equation is then integrated over the instantaneous
locity cl to give the equation of change for the assembly
particles of kindl in terms of the mass-weighted mean va
ues:
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d

dt
~rm

l F l c̄ l !1rm
l F l c̄ l

]

]r
•V

5rm
l F l

dc̄ l

dt
2

]

]r
•~rm

l F lClc l !2rm
l F l

dV

dt
•

]c l

]C

2rm
l F l S ]V

]r D :Cl
]c l

]C
1rm

l F lFl
•

]c l

]C

1rm
l F lCl

•

]c l

]r
1 (

m51

d K x lm~c l !2
]

]r
•Q lm~c l !

2
1

2 E E E ms3F S k
]~c l 82c l !

]Cl D :S ]V

]r D G
3~clp

•k!H~clp
•k! f m~1!

~r ,Cm,t ! f l ~1!
~r ,Cl ,t !gc

lp

3H 11
s

2
k•

]

]r F ln
f m~1!

~r ,Cm,t !

f t~1!
~r ,Cl ,t !

G
1¯J dk dcldcmL . ~A5!

Here rm
l and F l are the material density and solid volum

fraction of the particles of kindl. Expressions for the
particle-particle collisional fluxQ lm and the sourcelike term
x lm are given as follows:

Q lm~c!52
1

2E E E m~c l 82c l !ks3~clm
•k!H~clm

•k!

3gc
lmf m~1!

~r ,Cm,t ! f l ~1!
~r ,Cl ,t !

3H 11
1

2
sk•

]

]r F ln
f m~1!

~r ,Cm,t !

f ~ l !~1!
~r ,Cl ,t !

G1¯J
3dk dcldcm,

x lm~c!5
1

2E E E m~c l 81cm82c l2cm!

3s2~clm
•k!H~clm

•k!gc
lmf m~1!

~r ,Cm,t ! f l ~1!

3~r ,Cl ,t !

3H 11
1

2
sk•

]

]r F ln
f m~1!

~r ,Cm,t !

f l ~1!
~r ,Cl ,t !

G1¯J
3dk dcldcm for m5 l , ~A6!

x lm~c!5E E E m~c l 82c l !s2~clm
•k!H~clm

•k!gc
lm

3 f m~1!
~r ,Cm,t ! f l ~1!

~r ,Cl ,t !H 11 1
2 sk•

]

]r

3F ln
f m~1!

~r ,Cm,t !

f l ~1!
~r ,Cl ,t !

G1¯J dk dcldcm

for mÞ l .
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The equations of conservation of mass, momentum,
energy for a granular assembly of kindl may be derived by
taking c l in Eq. ~A5! to be 1,Cl , andCl 2, respectively.

~i! Balance of mass

dr l

dt
1r l

]

]r
•V1

]

]r
•~r lul !50, ~A7!

wherer l5rm
l F l is the apparent density andul is the diffu-

sion velocity of particles of kindl.
~ii ! Balance of linear momentum

r l
dV l

dt
2V l

]

]r
•~r lV l !52

]

]r
•Pl1r l F̄l2r l

dV

dt
2r l

]V

]r
•V l

1 (
m51

d

x lm~Cl !, ~A8!

whereV l andPl are the velocity vector and the macroscop
pressure tensor of particles of kindl, respectively.

~iii ! Balance of kinetic energy~pseudothermal energy!

3

2H nl
dT

dt
2T

]

]r
•~nlC̄l !J 52

]

]r
•ql2g l2P l :

]V

]r
1r lFl

•Cl

2r lC̄l
•

dV

dt
, ~A9!

whereT51/3Cl 2 is the mixture pseudothermal energy,ql is
the energy flux vector of particles of kindl, andg l is the rate
of energy dissipation of particles of kindl per unit volume of
the mixture due to the inelastic nature of the collisions. T
effect of the thermal energy on the particle elasticity is n
considered in the present treatment.

Assuming that the rapid shearing motion of a binary m
ture of differently colored granular fluids can be adequat
described by the consideration of the 13-moment approxi
tion @61#, expressions for the macroscopic pressure ten
Pl , energy flux vectorql , and sourcelike termsx lm(Cl) and
g l are given as follows@25#:

Pl5~r lTI1r la†l !1 (
m51

d

~11e0!r lnms3gc
lmH p

3
TI

1
p

15
~a†l1a†m!2

4

15
s~nT!1/2F ]V%

+

]r
1

5

6S ]

]r
•VD IG J ,

~A10!

ql5 5
2 r l~Tvl1 1

5 al !1 (
m5 l

d

s3gc
lm~11e0!K 2s~nT!1/2

3H m

6
T~12e0!S nm

]nl

]r
2nl

]nm

]r D1 1
3 nmr l

]T

]r J
1pnmr lT@ 1

6 ~um1ul !1 1
4 ~12e0!~um2ul !#
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nmr l@~am1al !1 1

2 ~12e0!~am2al !#L , ~A11!

x lm~C!5s2~11e0!gc
lmr lnmH p

3
sF2T

nl

nm

]

]r S nm

nl D G
2 4

3 ~nT!1/2~ul2um!1 1
15 S p

T D 1/2

~al2am!J ,

~A12!

g l5 (
m5 l

d

2s2~12e0
2!gc

lmnmr lTF ~pT!1/22
p

4
s

]

]r
•uG .

~A13!

In the above,a†m is the pressure deviator,am is the transport
pseudothermal energy flux vector,e0 is the coefficient of

restitution, and]V%
+

/]r is the nondivergent symmetric part o
the mean mass mixture velocity-gradient tensor.

For steady shear flow, the energy supplied to the grains
continuous shearing is balanced by the energy dissipa
due to inelastic collisions, and Eq.~A9! reduces to the fol-
lowing form:

05 (
m5 l

d H rma^xy&
†m 1(

p5 l

d

~11e0!rmnps3gc
mpF p

15
~a^xy&

†m

1a^xy&
†p !2 2

15 s~pT!1/2«̇~z!G J «̇~z!

1 (
m5 l

d

(
p51

d

2rms2~12e0
2!gc

mpnpT~pT!1/2. ~A14!

In the above equation,«̇(z) is the local rate of shear.
Expressions for the pressure deviatorsa^xy&

†l anda^xy&
†d are

given as follows:

(
p51

d

s2~11e0!gc
pnnprn~pT!1/2^$ 2

3 1 1
5 @21~12e0!#%a^xy&

†n

1$ 1
5 @21~12e0!#2 2

3 %a^xy&
†p &

52rnTK 11 (
p51

d

ps3~11e0!gc
npnp

3$2 1
5 @11~12e0!#1 1

3 %L «̇~z!, n5 l ,d. ~A15!

Equation~A15! can be inserted into Eq.~A14! to obtain Eq.
~15! for the mixture. It is worth mentioning that Eq.~A15!
may be derived from the balance law for the deviant part
the mean of the second moment of velocity fluctuation,
assuming that the spatial gradients of the mean fields
small, and that the dimensionless quantitiess/L, s/t0T0

1/2,
ul /T0

1/2, ud/T0
1/2, a†l /T0 , a†d/T0 , al /T0

1/2, andad/T0
1/2 are all
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of the same order of magnitude and small. Here,L, t0 , and
T0 are the characteristic length, time, and mixture granu
temperature, respectively.

Assuming thatuz
l 'ux

l !(ux
l 2ux

d), and that (ux
l 2ux

d)T1/2

and (ax
l 2ax

d)T21/2 are of the same order of magnitude, in t
presence of nonuniform shear stress in the direction of s
gradient, namely, thez direction, the balances of momentu
~A7! in the direction of the shear plane for particles of kindl,
for which nl@nd'n, may be reduced to

r luz
l 5

]

]z H r la^xz&
†l 1(

p5 l

d

~11e0!r lnps3gcF p

15
~a^xz&

†l 1a^xz&
†p !

2 2
15 s~nT!1/2«̇~z!G J . ~A16!
din

S

.

. E
id

da

Y.

a

d

Jr

v.

if-

02130
r

ar

Substituting fora^xx&
†l and a^xx&

†d from Eq. ~A15!, assuming
that the parameterT/ «̇(z)2 does not change significantly i
the direction of the shear gradient@62#, gives a reduced form
of this drift,

r luz
l 52F sT1/2

15p1/2~32e0!«̇~z!2G ]

]z
~r lU !, ~A17!

where the term in the brackets,B5sT1/2/15p1/2(3
2e0) «̇(z)2, is the particle mobility and U5$2(1
1e0)gcFs@1813e0(221p)2p#15p%«̇(z)2 is a potential
field, which is a function of position. The term on the rig
side of Eq.~A17! represents the contribution of inhomog
neous shear to the drift as well as the extra diffusive fl
arising from viscosity gradients.
es,
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